
Secure IX Network†

Jim Reeds

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper sketches a design for a network of computers running the McIlroy-
Reeds IX system. The emphasis is on modularity and decentralization; security does not
rely much on central key distribution. It assumes that there are multiple overlapping
domains of authority, and relies only loosely on an ultimate common organizational loy-
alty. This work is speculative. It is heavily influenced by the networking arrangements
in the Research 10th Edition UNIX system.

1. Single Machine IX*

When we began working on IX M. D. McIlroy and I simply wanted to add to the usual UNIX system
model a stricter file access policy, a variant of the military security classification system. We believed that
a no-frills implementation of this part of the Orange Book[DOD] requirements for a secure computer would
satisfy most real security needs of most users, even if it might NOT satisfy the Orange Book people them-
selves. We also believed that our new access restrictions could be kept largely orthogonal to the existing
scheme of rwx bits, which we left essentially intact. The new access policy could be airtight and draco-
nian in its preservation of security labels (and the intellectual property rights they represent), even if on the
same machine, at the same time, the usual UNIX system concepts of userid, setuid, root accounts, and rwx
file permission bits were subverted.

After three years of part-time but intense work we have not changed those beliefs, but we have
expanded our notion of what needs to go into a ‘‘no-frills implementation.’’ Our resulting system, like all
other attempts at secure operating systems, ends up with a two-tier structure. There is the generality of user
programs, including all programs written by ordinary users and most of the programs in the public program
directories. And then there are the privileged programs used to administer the security system, covering
functions like logging users in, changing user’s security clearances, and so on.

The distinguishing property is that the privileged programs must break the usual security rules, or
viewed another way, that the kernel must be assured by a privileged program that some particular violation
of the usual rules is not in fact a breach of security. Files, for instance, are not usually allowed to drop in
security classification level. Terminal ports are files in the UNIX system, so when a terminal port used in a
classified login session becomes free at the end of the session, before it may be used for a new, unclassified,
login session it must be declassified by a privileged program. Ordinary disk files might be declassified
from time to time for the usual reasons; this again needs a privileged program. The kernel cannot itself
know when such actions are acceptable: it relies on the privileged programs to tell when to deviate from its
worst-case application of the usual rules.

† Reprinted from DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Volume 2, Distributed
Computing and Cryptography, J. Feigenbaum and M. Merritt, editors, pp. 235-244, by permission of the American Mathe-
matical Society.
* Some details of single-machine IX given below are, for exposition’s sake, simplified. The true description is in the
accompanying papers. IX is not pronounced like the German word ich.

- 2 -

Trusted Computing Base

The presence of these privileged programs complicates things enormously. Obviously questions like
‘‘how do I know that a baddie hasn’t tampered with a privileged program,’’ or ‘‘how do programs become
privileged,’’ or ‘‘how do new releases of privileged programs get installed on the system’’ are relevant.
The easy answers (essentially the same in all secure operating systems) are: Giving or removing privileged
status to files can only be done by a privileged program. A privileged program can not be removed or
changed, other than to have its privileged status removed. And the program that first runs at boot time, init,
is privileged. The privileged programs thus form a self-nominating closed ‘‘committee’’ which, together
with the kernel as an ex-officio member, runs the computer. The jargon for this committee is TCB: trusted
computing base.

This in turn leads to the hard questions. How does the TCB know which information from the out-
side world it should act on, and which is spurious? How does the computer user know he is talking to the
TCB and not an imposter? How does one privileged program communicate with another, in such a way
that each recognizes the other’s privilege? IX’s answers to these questions are based on two mechanisms,
one in the kernel, the other coded into the privileged programs, both of which seem easily extendible over a
network. Hence the TCB’s iron reign can be extended over a network, and hence so can IX security ser-
vices.

PEX

The first of these wonder mechanisms is a form of mandatory exclusive file locking, which we call
PEX for ‘‘process exclusive.’’ Any file may be marked for exclusive use by a process in which it is open,
so long as no other process has done so first. The exclusivity lasts until the process explicitly drops it or
until the file is closed or the process exits. A special twist occurs in pipes, each end of which may be inde-
pendently PEXed. A pipe will not carry data unless both ends are PEXed or neither end is PEXed: an
attempt to read or write on a half-PEXed pipe result in an error. When a pipe end is PEXed the other end is
given indicia of privilege of the PEXing process. All this is done synchronously and independently of the
usual stream[R] discipline. Thus a privileged process communicating on a pipe can tell if it has a unique
partner process at the other end, and whether the partner process is privileged. A privileged program, for
example, can refuse to collect a password unless it can PEX the standard input. If talking to an IO device
unPEXed to any other process, the PEX call succeeds and no interloping process that also has the device
open can steal the password. If talking to a pipe (say, to a window on a windowing terminal) the PEX bid
will be accepted or rejected by the process at the other end of the pipe. If accepted, the privileged program
can now tell if the other end is also in the TCB (as a trusted terminal multiplexor running secure windows
would have to be), in which case the password dialogue can go forward, and so on. Using these means
parts of the TCB can recognize each other, can know when they are talking to users, and —although the
details are clumsy— can prove to users that they are indeed talking to the TCB.

This can be thought of as a generalization of the Orange Book’s ‘‘trusted path’’ mechanism, and as
an alternative to Biba-style ‘‘inverse labels’’. (Biba inverse labels are described in pages 69-71 of
Gasser[G]; the labels track trustability or provanance of data rather than secrecy.)

The notion of a PEXed pipe is nothing other than that of a secure communications channel between
identified parties, an end goal of both classical and modern cryptology and of secure network design. The
novelty is in making this service available to user processes, protecting themselves from eavesdropping,
forging or spoofing by other processes. In its current single-machine form, the writ of PEX ends at the
machine boundary, and cryptography is not needed to implement this new operating system feature. (New
to the UNIX operating system, at least.) For PEX to go over a network to another machine would require at
least a special protocol for the kernels to use in discussing the PEXity of their ends of the cross-machine
pipe, and also possibly cryptography to identify and authenticate the end machines and to protect the data in
transit.

- 3 -

Privilege Server

The second special mechanism for privileged process control in IX is a privilege server embodying a
particular design for denoting, recording, and exercising users’ rights. The main idea is that although the
TCB is all-powerful, it doesn’t have any security interests of its own, save self-protection and economic
control of the local hardware resources. The TCB is a custodian of users’ rights, which might originate
off-machine, possibly created under an authority separate from the management or ownership of the local
host computer. In IX these fiduciary responsibilities of the TCB are managed by the privilege server.

The privilege server centralizes authorization calculations, much the way an authentication server
centralizes authentication services. Authorization calculations often take a stylized form: a resource’s
owner passes a credential to a user, who later presents the credential together with a particular resource
usage request to the custodian of the resource. In IX the privilege server is the custodian of most users’
rights (other than routine file access rights implied by user id and process label). For each request, the priv-
ilege server must check that the credential indeed authorizes the request, that the privilege server itself is
authorized to act on the request (which includes checking whether the resource in question has been
entrusted to the privilege server), as well as authentication information, such as whether the issuer of the
certificate is the owner of the resource, and so on.

Requests for privileged services are made to the privilege server as text strings, which are also state-
ments in a trivial computer command language, nosh. (This is a restricted, feature-starved ‘‘secure’’ shell
with fewer possibilities for latent subversive side effects than found in the usual interactive shells sh, csh, or
ksh.) If the requester has a right warranting the command string in question then the privilege server exe-
cutes the command. Corresponding to each right, then, is the set of nosh command strings it warrants.

More precisely, a ‘‘right’’ is a regular language. Rights are recorded in a privileges file as pairs
(R , Q), where R is a regular expression* (specifying the set of nosh commands warranted by the right) and
where Q is a predicate applied to: the user, the execution environment of the current invocation of the privi-
lege server, the status of the user’s connection to the server, and (optionally) a protocol execution status.
When a request s is presented to the server, it is executed only if a pair (R , Q) can be found such that s is an
element of R and such that the predicate Q evaluates true. Thus ‘‘anyone’’ who satisfies Q may exercise R.

For ease of subdivision and delegation, we organize our privilege file as a rooted tree. Node
(R 1 , Q 1) may be above (closer to the root than) node (R 2 , Q 2) only if language R 2 is contained in R 1.
Thus sub-nodes correspond to sub-rights, and if you can exercise a right at a given node you automatically
may do anything you could do by exercising rights at sub-nodes.

Our command language has statements to edit the privileges file, so it is possible to formulate rights
to change rights. In particular, it is easy to formulate a right to edit only a sub-tree of the tree of rights.
Allowed edit commands are: diminish the set of rights at a node, delete a node or sub-tree, create a sub-
node with rights equal to the parent node, and change the Q part of a node. Thus editing can only reparcel
or dilute existing rights, but not create new ones. (Since privilege file edits are relatively infrequent there is
no practical performance loss in forbidding concurrent edits, or forbidding privilege calculations during
edits.)

To delegate a right means simply to create a sub-node in the tree of rights.

The Q predicate might require given login ids, ask for a password, require successful completion of a
challenge-response protocol, or insist that the privilege server is being invoked by a particular named pro-
gram. Q specifies the authentication needed to enjoy the rights in question.

A weak point in this scheme lies in the formulation of rights as regular expressions: extreme care
must be taken to ensure that the nosh command language statements accurately catch the real meaning of
the rights in question. In particular, the manual describing the TCB and the nosh language must be accu-
rate, and worse, the meaning of command-line arguments and options to privileged programs may never be
lightly changed, lest established rights be overthrown or inadvertently widened.

*Abuse of notation to follow: I make no notational distinction between a regular expression R and its corresponding lan-
guage, so sometimes R really means L(R).

- 4 -

An Example

Here is how the privilege server helps administer a security classification compartment. Suppose
some users of an IX machine start a new project and want to create a security compartment to guard their
work on the computer. This new security compartment shows up outside the computer as a new classifica-
tion keyword stamped on documents and inside the computer as a new bit field in the security labels carried
by files and processes. Say project leader Alpha wants to create a compartment BETA for his project; what
steps does it take to teach the TCB about this new compartment?

To begin with the TCB’s only interest in BETA is in issues of operating system resource exhaustion:
is the keyword BETA already in use for some other security compartment and is there an unused label bit
field on the local machine to represent BETA? The usual solutions to these problems apply: categories
might have hierarchical names (keywords like ADONIS.PICCOLO.BETA are less likely to be pre-
empted), and only certain users may consume label bit fields by creating new security classifications. So
among the rights already stored in the privileges file is an entry (R mkcat , Q mkcat) giving project leaders the
right to run the privileged mkcategory program:

R mkcat = mkcategory .*

Q mkcat = login_id∈{ Alpha , Rocky, Boris , Natasha . . . } .

So Alpha presents the request

mkcategory BETA

to the privilege server, which runs the mkcategory program in such a way that mkcategory knows this invo-
cation is an authorized invocation. Note that so far the privilege server has only been guarding the local
machine’s operators’ interest in preventing resource exhaustion, and not any security interest per se.

Mkcategory has two functions. One is to allot a bit field in the machine’s internal representation of
security labels and bind the name BETA to it, registering this in an official list. The other function is to
register Alpha as the ‘‘owner’’ of BETA by placing a new entry β = (R β , Q β) in the privileges file. (The
mkcategory program itself has the right to edit part of the tree of rights, according to a
Q mkcat 2 = invokerprog≡mkcategory.) To begin with mkcategory finds out from Alpha what formula to
use for Q β , that is, how future commands from Alpha about BETA will be recognized. Alpha may provide
any formula for Q β he wishes: he may simply specify a password, or may specify that possession of
Alpha’s login_id suffices, may present the public key by which future commands may be verified, a la
RSA, and so on. The R part of the new right is always the same for a newly created category, and expresses
the union of these rights:

Exerciser may access data marked BETA by logging on with the appropriate bit set in his process
label.

Exerciser may declassify category BETA from files, by executing a privileged command of form
downgrade BETA .* which clears the BETA bit from the named file.

Exerciser may specify network addresses that may receive BETA data.

Exerciser may edit this node β in the tree of rights.

Now project leader Alpha has a private security classification label all of his own. He can make classified
login sessions, he can create secret files readable by no one else, he can declassify them.

Soon however Alpha wishes his assistants Mr. Gamma and Ms. Delta could access his secret files,
too. He invokes his right to edit node β (by presenting whatever credentials he earlier spelled out in Q β)
and creates a sub-node, call it β/ access, whose R part consists solely of the exerciser’s right to read and
write data marked BETA. The Q part is again at Alpha’s discretion, who (say) chooses the formula

Q β/access = login_id∈{ Gamma , Delta } & shows_password(cyto 97 plasm) .

(Alpha need not add himself to the list in Q β/access because he already may exercise the superior right β, but
might want to do so because for simple file access Q β/access might be easier to use than Q β .) Note that
Alpha has extended only his access rights to Gamma and Delta: as desired, Gamma and Delta can read and
write BETA secrets, but they cannot change the list of people so cleared.

- 5 -

The project prospers, and when new assistants Eps through Lamb show up boss-man Alpha tires of
editing β/ access. So he appoints Ms. Delta as his BETA-clearance officer, by creating a new node
β/ clearance. Q β/clearance only lets Delta in. R β/clearance only allows the exerciser to edit the predicate
Q β/access.

At appropriation time some good press coverage is needed, so Alpha appoints Gamma his publicity
manager, whose job of course includes shrewdly sequenced leaks of BETA data, which means a new node
β/ declass is formed, with a Q β/declass for Mr. Gamma alone, and with R β/declass allowing BETA-downgrade
rights to the exerciser.

What would it take to extend these activities to another computer? Obviously at set-up time the
remote file servers need to reconcile their differing internal representations of file security labels: it is
almost guaranteed that the bit slot allotted to represent category BETA will differ on all machines. But
before BETA files may be traded the two machines should really check to make sure that what each knows
as category BETA is really Alpha’s BETA, by trading and verifying credentials signed by Alpha, accord-
ing to the recipe spelled out in Q β .

2. Networked IX

The general shape of a network of IX machines is clear. If a pair of machines trust their network con-
nection, and trust each other’s TCBs to enforce the same basic security policies, then they may extend PEX
service and remote file system service as sketched above. A minimal version might consist of the follow-
ing ingredients:

• A LAN offers secure networking within the confines of a single department.

• The individual IX machines are run by the same systems staff, who run identical software on the
machines, so any of the machines can trust any other’s TCB as much as it trusts its own

• Terminals are at known network locations at known physical locations

Within such a network different machines can carry varying mixes of secret data: some label categories
may exist on all machines, other categories may exist on single machines only, other categories yet may
exist on other subsets of machines. The user communities may be heterogeneous: not all users may have
accounts on all machines, nor need all users of a given machine have access to the same security categories.
Such a setup might be appropriate in a small department, or in a rigidly run branch of the government.

A more ambitious network might include subnets of the above description but would also have inse-
cure network links, a variety of terminals in unknown or uncontrolled locations, a variety of computers with
differing software, some of which are in isolated secure physical locations. Such a network would need a
measure of cryptographic boost to give untappable connections, or connections to known endpoints. While
it is unreasonable to hope that the computers all run exactly the same system software there is still a chance
that their security software is the same. If two machines each believe the other’s TCB there is a possibility
that they can trade security services. To prove that partner machines have correct TCBs some appeal to
authority is needed. Depending on details, machine A might trust B if B is at a known network address, or
if B has a document attesting B’s honesty, signed by an authority A trusts, or (what is really a variation of
this) if B can communicate at all with A when A uses cryptographic keys it was provided with by a trust-
worthy authority.

In an ambitious network user terminals and user authentication pose a real problem: there is no gen-
eral way for a network or a computer to tell the difference between a terminal and a work station or heftier
computer. Any command purporting to come from a user at a terminal might really come from a hostile
computer, which can play the IX protocols for dishonest purposes. Terminals on the network are thus
treated as computers: unless they are at certain special secure network addresses on a trusted network, they
must prove their bona fides before they are given PEX service, and hence before they may be used to get
favors from the privilege server.

Little special software is needed for networked IX given single-machine IX and given regular UNIX
system networking facilities. As hinted earlier, a protocol for the TCBs to manage cross-machine PEX
would be needed, possibly as a stream [R] module. And to handle remote file systems, for example, a form
of ‘‘power of attorney’’ protocol is needed, by which one machine can prove to another that it has authority

- 6 -

from a third party known to both. To be usable there must be user software to make it convenient to create
(say) RSA keys on demand, and so on.

3. Special Terminals and User Authentication Hardware

In a network of IX machines, terminals at unknown or uncontrolled network locations must be
treated as potentially hostile computers, which of course makes logging in, authenticating users, and read-
ing secret data over a terminal difficult. Here is a possible solution to these problems, relying on special
hardware, prompted by our experience with windowing terminals in single-machine IX

The main idea is to use special purpose secure computers as terminals, together with smart-card-like
user identification tokens which are also special purpose secure computers.

The terminal and screen software is part of the TCB. The TCB is unprogrammable (in ROM, say)
and contains secret cryptographic keys in an uninspectable store; the whole packaged in a tamper-proof
container. The TCB can enforce a primitive form of IX file access policy (each multiplexed terminal pro-
cess and associated windows, say, has a label, with label inequalities obeyed on mouse-initiated cross-
window copies or ‘‘snarfs’’). Also, a form of PEX is available: if a screen layer is accessible by exactly
one terminal process, and if the keyboard is accessible only by that terminal process, then a distinctive
unforgeable visual mark may be placed on the screen layer (a flashing border, say).

The ‘‘user authentication tokens’’ are small special purpose computers with their own TCBs and
tamper-proof memory. A token can be plugged into a special terminal, and has a light visible to the user
when the token is plugged into the terminal.

This hardware is used to help several authentications. There are as many as four parties with differ-
ing security interests: user, user token, terminal, and host computer. The user token must be convinced that
its legitimate user is present. The terminal and host must like each other’s TCBs enough to set up cross-
machine PEX. The host must communicate through the terminal to the user token, but the terminal will not
play PEX unless it trusts the token, and so on.

Most of these security interests are satisfied by multiple applications of, say, the Fiat-Shamir[FFS]

protocol, where the terminal, host, and token successively play differing roles. The FS protocol has two
roles: the ‘‘prover’’, who has a certificate issued by an authority, and a ‘‘verifier’’ who checks the certifi-
cate without—and this is the big trick—actually seeing it. The authority knows the factorization of a mod-
ulus N. The modulus N, but not its factorization, is known ahead of time by the verifier. What the verifier
knows at the end of the protocol is that whoever prepared the certificate knew the factorization of N.

The terminals and tokens carry certificates from their manufacturers, signed according to a modulus
N term, characteristic of the brand name of the terminal. This modulus N term is known by all the host com-
puters. This prior distribution of public authenticating key is not a burden because the number of distinct
brands of secure terminals will remain small.

User identification tokens also carry certificates attesting to the identity of their owners. These cer-
tificates are signed with a modulus N dom characteristic of the security domain in which the user lives.
There is nothing wrong with a user identification token carrying several such certificates valid in different
domains. Computers also have one or more certificates signed by the same moduli N dom. The assumption
is that the same authorities that certify users are able to certify computers. Roughly, if you have an account
on a machine, there is at least one N dom you and the machine have in common.

Here is how to set up a login session with such equipment. First, the token and terminal authenticate
each other with respect to modulus N term. They tell the user that they like each other by visual signals: the
light on the token is lit, a special icon or message is displayed on the terminal. Then the token has a chance
to demand a password from the user, typed via the keyboard of the now-trusted terminal. Then the token
tells its N dom values to the terminal. Terminal and host computer negotiate to find a common N dom, then
the computer proves its bona fides to the terminal using modulus N dom and the terminal proves to the com-
puter that it is a special terminal with modulus N term. The computer and terminal now set up the cross-
machine PEX protocol on their link, and the user proves his identity to the computer either by typing a clas-
sical password or by letting his token prove the user’s credentials using N dom.

A simplification is possible in the case where there is only one security domain which knows about

- 7 -

all trustable computers. Then the user token is not needed: the single modulus N term can suffice for all
applications of Fiat Shamir.

Conclusion

The forgoing describes a general architecture for a network of secure computers, offering far more
security than is commonly found in the UNIX system, offering users a measure of distributed security ser-
vices with a minimal overhead of centralized bureaucracy.

How large an organization could such a net serve, before the methods of user authentication, delega-
tion of rights and authorities, and system administration sketched above becomes too cumbersome? How
much work would it take to build such a net, given the existing pieces?

I have had chats with Baldwin, Coutinho, Feigenbaum, Fernandez, Fraser, Grampp, Kurshan, McIl-
roy, Merritt, Pike, Presotto, Ritchie, Thompson, Wilson, Zempol, among others, to whom I am grateful for
ideas and helpful criticism.

- 8 -

References

[DOD] Department of Defense Computer Security Center. Department of Defense Trusted Computer
System Evaluation Criteria. US Department of Defense, Fort Meade, MD, 15 August 1983.

[FFS] U. Feige, A. Fiat, and A. Shamir. ‘‘Zero-Knowledge Proofs of Identity’’, Journal of Cryptology,
1:77-94, 1988.

[G] M. Gasser. Building a secure computer system. New York, Van Nostrand Reinhold, 1988.

[MR2] M. D. McIlroy and J. A. Reeds. ‘‘Multilevel Security with Fewer Fetters’’, in UNIX Around the
World: Proceedings of the Spring 1988 EUUG Conference. European UNIX Users’ Group, London,
1988.

[MR3] M. D. McIlroy and J. A. Reeds. ‘‘Multilevel Windows on a Single-level Terminal’’ in Proceedings,
UNIX Security Workshop, August 29-30, 1988. Also in the present collection. USENIX, Portland,
OR.

[R] D. M. Ritchie. ‘‘A Stream Input-Output System’’, AT&T Bell Laboratories Technical Journal, Vol.
63, No. 8, October 1984.

