Ere Gooiie

17 Sun 177F

Computing Science Technical Report #33

A User's Guide to DODES, a Double Precision
Ordinary Differential Equation Solver

N. L. Schryer

August 1975

A User’s Guide to DODES, a Double Precision Ordinary
Differential Equation Solver.

N. L. Schryer

_ Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

DODES (Double precision Ordinary Differential Equation Solver) is a
package of portable FORTRAN subprograms for integrating first order initial
value problems of the form

-“% = fhx), x(1) = x (1)

where x(¢) is a vector valued function of time ¢, fis a vector valued function
of 1 and x, and x, is a vector of initial conditions. These subprograms allow
easy user control over both the accuracy and the output of the integration pro-
cess.

The algorithm used is a variable order, variable step-size extrapolation
scheme augmented by several mechanisms for dealing with discontinuities in
the derivatives of the solution. Previous extrapolation based differential equa-
tion solvers lack one or more of these features of DODES. Thus, DODES is a
more robust, efficient and reliable method for solving (1).

A User's Guide to DODES. a Double Precision Ordinary
Differential Equation Solver.

N. L. Schrver

Bell Laboratories,
Murray Hill, New Jersey 07974

1. Introduction

DODES (Double precision Ordinary Differential Equation Solver) is a package of port-
able FORTRAN subprograms for integrating first order initial value problems of the form

dx
7 S, x) (1.1)

subject to initial conditions
x(t,) = x (1.2)

where x (1) is a vector valued function of time ¢ f'is a vector valued function of 7 and x, and x,
is a vector of initial conditions. These subprograms allow easy user control over both the accu-
racy and the output of the integration process. The algorithm used is a variable order, variable
step-size extrapolation scheme which is locally "optimal". That is, at each step in the integra-
tion procedure, the order and step-size are chosen to minimize the cost per unit time-step.
This extrapolation scheme is augmented by several mechanisms for dealing with discontinui-
ties in the derivatives of the solution. This makes DODES a robust, efficient and reliable
method for solving (1.1) subject to (1.2).

The basic algorithm used by DODES is extrapolation to the limit of Gragg's modified
mid-point rule [8]. This technique has been used previously in several differential equation
solvers, [2, 3, 17]. It has been found [5, 11, 19] to be efficient and competitive with other
methods (7, 12] for solving (1.1).

The step-size and order monitor described in [14] is used to drive the integration process.
This makes the overall procedure far more robust and reliable, as well as increasing its
efficiency. The efficiency (cost) of DODES is substantially independent of the initial time-step
chosen by the user. It is sufficient to have the initial time-step merely within a few orders of
magnitude of the "correct” value.

The techniques of [2] and [3] are fixed (14") order, variable step-size methods, with
rather crude step-size monitors. The fixed-order step-size monitor of [17] was a great improve-
ment over those used in [2} and [3). However, one assumption made by [17] is often violated
in practice. This situation typically arises when the solution of (1.1) is pleasantly smooth in
some regions, while being exceedingly "kinky" in others. In such cases, the use of [17] results
in rather inefficient integration. DODES has a locally optimal monitor for both order and
step-size, and a mechanism for dealing with "kinky" solutions. This makes DODES more
efficient, and more reliable, than [2], [3] or [17] - in some cases by more than an order of mag-
nitude. A thorough comparison of the performance of DODES with that of {2]. (3], (7], (12]
and {17} is made in [15].)

The program unit DODES has been successfully verified for adherence to a portable sub-
set of ANS Standard FORTRAN, called PFORT, using the PFORT verifier [13]. This virtually
guarantees that the program will successfully compile on any existing ANS conforming FOR-
TRAN compiler. DODES uses the function subprogram IIMACH [4] from the PORT library
[6] to obtain all machine dependent parameters. Thus, DODES may easily be ported to any
machine which supports ANS FORTRAN. DODES also uses the storage allocator [9] and the
error handling facility [10] of the PORT library.

Section 2 briefly discusses the use of extrapolation and Gragg’s modified mid-point rule to
solve (1.1), as well as the application of the monitor [14] to drive the process. Section 3
presents the calling sequences, and a description of the arguments, for the subroutines DODES,
DODES! and DODES2. These three routines provide various levels of detailed control over
the integration process. Section 4 gives several examples of the use of DODES. Finally, sec-
tion 5 discusses various implementation details which some users of DODES may find useful.

2. The Algorithm

The underlying discretization process used is Gragg’s modified mid-point rule [8). When
asked to integrate (1.1) between time 7, and time 1, using 2N time-steps, that rule sets

h= (1, —4)/N, x5 =x(1),and x, -x(t,)+§f(l,,x,). Then, for i=2, - - - 2N, the quantities
x;=x;,_y +hf(y+ (i—l)g- v Xi—1)
are computed. This gives x;, as an approximation to x(z,). In fact, we have [16]
Th) = xpy = x(1,)+ }Elfjhb‘ @.1)
=

where the 7, are unknown vectors which are independent of A Thus, for small A each com-
ponent of Tih) resembles a polynomial in h2. We want to obtain 7(0) = x (1,) accurately.

The process of extrapolation is easily described. Let a sequence of h’s be defined by
h;=hy/N, i=123,--- where by =1, —1, and the N, form a monotone increasing sequence
of positive integers. Bulirsch and Stoer show in [1] that given an operator T(h) satisfying
(2.1), and such a sequence h;, the value at h =0 of the polynomial of degree m which interpo-
lates T(k;) for i=0, ..., m, is given by TO which is determined from the following recursion re-

lations
T§=T(h;) for 0Si<m
and
T =Tt + (T2} —Ti_ D h/hy)2 =1) (2.2
for0<i<m—j, 1<j<m
If the T] are organized into a lozenge of the form
T(hy) =19
T(hy) =T} it 19
rey-g T on B o
T(hy) =T
T(hy) =T3¢ Ti T3 7}
T(hs) =T§ n
then the above recursion relation (2.2) expresses each element of the j-th column (>0) in

terms of its two neighbors in column j-1. In [1] it is also shown that the error obeys
| T =TOSM, (h by)? (2.3)
for some constants M, . Finally, it is shown that for sufficiently small f,

1
(h!h 00)% =1

T -T0)] = |1+ |7 =7 (2.4)

/

and thus we can estimate the error in T,. A similar result is established for interpolation by
rational functions [1). From (2.3), we define the order in column-j to be 2(j+1). The /evel of
extrapolation in a lozenge is defined to be the number of entries in the first column of that
lozenge. The value hy =1, —1, is referred to as the time-step while the h, are called sub-steps.
Extrapolation approximates the x(7,) values accurately, but does not accurately approximate
x(t; + nh)) for0<n< N,

Extrapolation of Gragg's modified mid-point rule gives a process of arbitrarily high order.

Also, not only does the extrapolation procedure generate accurate (high-order) results, it also
provides reliable error estimates, via (2.4) above, for those results.

Relations (2.3) and (2.4) describe both the rate of convergence in each column of the ex-
trapolation lozenge and the actual error in each element of the lozenge. This is sufficient infor-
mation to determine which columns of the lozenge are locally "optimal” and what step-size)
is locally "optimal." The step-size and order monitor [14] makes use of these facts to provide an
“optimal” choice of step-size and order for the extrapolation process. Since the extrapolation
process assumes that the solution x(1) has many continuous derivatives, the monitor of [14]
also has several mechanisms which allow efficient integration even through singularities.

The monitor of [14] is the main driver of the solution process. Basically, all the package
DODES does is provide the monitor with subroutines for computing approximate solutions of
(1.1) using Gragg's modified mid-point rule. for computing error tolerances, and for handling
the step-wise output of the integration process.

3. The Subprograms

This section describes the subroutines DODES, DODES! and DODES2. These
subroutines provide various levels of control over the integration process. A function subpro-
gram DODESE is described for controlling the accuracy ol the computed solution.

The simplest way to solve (1.1) is 1o use the
SUBROUTINE DODES(F, X, NX. TSTART, TSTOP, DT, ERRPAR, HANDLE)

The input 10 this subroutine consists of:

F - A subroutine for computing the right-hand side of (1.1). CALL F(T.X.NX,FTX)
should return FTX{(1) = the I-th component of the vector f(T.X), for I=],. NX.
The subroutine F should be declared EXTERNAL in the program calling DODES.

X - The initial values for the solution, X=x(TSTART).

NX - The length of the solution vector X.

TSTART - The initial time, that is, X=x(TSTART).

TSTOP - The final time, the point in time at which integration should stop.

DT - The initial time-step to be used. The performance of DODES is quite independent
of the value of DT chosen by the user. It is sufficient to merely have DT within a
few orders of magnitude of being "correct”. The value of DT will be automatically
adjusted by DODES, during the integration process. to achieve the accuracy desired
al the least possible cost.

ERRPAR - A REAL vector of length 2 for use in controlling the accuracy of the computed

solution. Specifically, each component X(I) of the solution will be computed to
within an absolute error of

ERRPAR(1) * DABS(X(I)) + ERRPAR(2)

for I=1..,NX, at each time-step. This error request must always be positive.

HANDLE - A subroutine for interacting with the integration process. Al the end of each

time-siep there is a good deal of information which DODES has internally available.
This information includes such items as the solution x at a new point in time, an
error estimate for that computed solution, and an "optimal” DT for the next time-
step. The subroutine HANDLE is used by DODES to communicate this informa-
tion to the user. On the other hand, the user may also communicate with DODES
through HANDLE, as described below. Thus, HANDLE gives the user a "handle"
on both the results of the integration and on the way DODES does its job. At the
end of each time-step, DODES will execute the statement

CALL HANDLE(TO, X0, T, X1, NX, DT, TSTOP, E)

where X0=x(TO0) is the value of the solution at the end of the previous time-step
and X1=x(T1) is the value of the solution at the end of the current time-step.
HANDLE should be declared EXTERNAL in the program calling DODES. If
TO=TI then DODES failed to converge using the previous value of DT, the values
in X1 are garbage, and integration from time TO will be re-tried with the current
value of DT. If the solution being obtained is reasonably smooth, once the integra-
tion process has made progress (TO = TSTART). such restarts should not occur.
The other input to this subroutine follows:

NX - The length of the solution vector X, same as in the call to
DODES.
DT - The proposed “optimal” size for the next time-step.

TSTOP - The current value of the final time for the integration.

E - A REAL array of estimates for the errors in the values of X1
for the single current time-step. The error in X1(I) is E(I)
for I=1,.,NX, assuming that X0 is exact at the beginning of
the time-step.

On return from HANDLE, if TI=TSTOP. integration will cease and DODES will re-
turn control to its caller. The user may alter any of the values X1, DT or TSTOP
before returning from HANDLE. HANDLE can do many things - print the solu-
tion out, save it for later processing, simply return. create plots of the solution or
whatever the user desires.

The output from DODES consists of

X -
TSTOP -
DT -

The final value for the solution, X=x{TSTOP).
May be altered by the user supplied subroutine HANDLE.
Proposed "optimal” size for the next time-step. if any.

The subroutine DODES has 7 error states:
Must have NX 2 1.
Must have Sign(DT) = Sign(TSTOP - TSTART) for the input values of those variables.

3 Must have TSTART+DT = TSTART. in floating-point arithmelic. for the input values of
those variables.

4 HANDLE cannot alter DT and/or TSTOP so as 1o violate the condition Sign(DT) =
Sign(TSTOP - T1).

5 HANDLE cannot alter DT so that TI+DT=TI in floating-point arithmetic. This error is
recoverable.

6 The error tolerance for each component of the solution vector X must be positive. This
error is recoverable.

7 The step-size monitor has chosen a value for DT which obeys T1+DT=T1 in floating-
point arithmetic. This may simply mean that the system (1.1) is "stiff". In that case. a
“stifi” differential equation solver should be used, see [7] or [18]. Another possible expla-
nation is that the subroutine F for computing the right-hand side of (1.1) is improperly
coded - the "function” it actually computes is not really a decent function.

The amount of scraich space allocated by DODES is
S(DODES) < 165 4+ 26*NX + Max (3*NX + S(F),10*NX + 30, S(HANDLE)) (3.1)

INTEGER words, where S(SUBPROG) is defined to be the number of INTEGER words of
scratch storage allocated by subprogram SUBPROG.

More detailed error control over the integration process is obtained by using the

SUBROUTINE DODESI(F. X. NX, TSTART, TSTOP, DT. ERROR, ERRPAR, HANDLE,
GLBMAX, ERPUTS)

The extra arguments (ERROR,. GLBMAX and ERPUTS) in this subroutine provide direct user
control over the accuracy of the integration process.

There are several possible options available for error specification. First. the user, via the
subprogram ERROR, may specify literally any accuracy requirement he wishes for the solution.
Second, there are several popular methods of error control which are controlled by the switches
GLBMAX and ERPUTS, and implemented by the subprogram DODESE.

The error control provided in the subroutine DODES is based on the local value of the
variables. That is, the error acceptable in X (1) is

ERRPAR (1)*DABS(X (1)) + ERRPAR (2) (3.2)

which depends only upon the current value of X(I). However, in some cases it is desirable to
have the error in a component of the solution depend upon the maximum absolute value that
component has attained since the start of the integration process at time 1=TSTART. In that
case. the error desired in X(1) is of the same form as (3.2) above, but with X(l) replaced by

Max | x, (1) | (3.3)
re | TSTART N]

That option is controlled by the switch GLBMAX, as described below.
The error control provided in the subroutine DODES is an error per time-siep criterion.
This can be rather bad if the time-steps taken during the solution process get very small -

many. time-steps will be taken and the errors may pile up in unacceptablc amounts. Another
CTTOr oplion is to use an error per unit-time-siep criterion. By making the error tolerance in X(1)

look like
DABS (DT)* (ERRPAR (1)*DABS(X (1)) + ERRPAR(2)), 3.49)

when the time-step gets small, so does the error requirement. However, when using the error
per unit-time-step criterion, the reverse argument holds - when DT is large, so is the error
tolerance. The error per time-step versus unit-time-step option is controlled by the switch ER-
PUTS as described below.

The inputs for DODES! are as previously described in DODES, with the following addi-
tions:
ERROR - This is a subprogram for computing accuracy requirements for the solution process.
It must be deciared EXTERNAL in the subprogram calling DODES]1. DODES uses
ERROR in determining when the extrapolation process has "converged”. When
DODES has computed a tentative solution vector, it also has an estimate available
for the error in that vector. DODES uses the function subprogram ERROR to ask
the user if the computed solution vector is sufficiently accurate. ERROR must have
the form

LOGICAL FUNCTION ERROR(X, NX, T, DT, ERRPAR, ERPUTS, E)

where X=x(T) is the solution vector of length NX for which an error tolerance is to
be supplied by ERROR. The other inputs to ERROR are

DT - The time-step used to obtain X=x(T).

ERRPAR - A REAL vector of length two, as passed to DODESI, or as
modified by a previous call to ERROR. (See below.)

ERPUTS - This LOGICAL variable has the same value as the input vari-
able ERPUTS passed to DODESI. (See below.)

E- This REAL vector gives the absolute accuracy of the solution
X, as computed by DODES1. The absolute error in X(I) is
E(D), for I=1,.. NX, for the single current time-step.
The value returned by ERROR to DODESI is

- .TRUE. if the tentative solution X is satisfactory to the user;
otherwise .FALSE. .
The output from ERROR is

ERRPAR - This vector may be altered, if desired.

E - The vector of REAL absolute errors the user will tolerate in
the proposed solution vector X. E(I) is the acceptable abso-
lute error in X(I), for I=1.. NX. All of the returned E(I)
must be positive.

ERRPAR - This REAL vector of length two will be passed to ERROR, just as received by
DODESI. Possible uses for this vector are shown in (3.2) and (3.4).

GLBMAX - If GLBMAX is .TRUE., then the global maximum absolute value (3.3) of each
component of the solution X is to be recorded as described in Section S. If the ER-
ROR subprogram supplied by the user is DODESE, then either the global max-
imum absolute value or the local value of the solution will be used in the error
tolerance, depending on whether GLBMAX is .TRUE. or .FALSE. . If the user
supplies his own ERROR subprogram, then the error tolerance is at his discretion.

ERPUTS - If the ERROR subprogram supplied by the user is DODESE, then either an error
per unit-time-step criterion like (3.4), or an error per time-step criterion like (3.2),
will be used, depending on whether ERPUTS is .TRUE. or .FALSE. . If the user
supplies his own ERROR subprogram, then the error tolerance for each component

of the solution should be proportional to DABS(DT) if ERPUTS=.TRUE., and
should not have this property otherwise.

The vutput from DODESI is the same as that for DODES with the additional possibility
that the user may alter ERRPAR through his subprogram ERROR.

The error states for DODES! are the same as those for DODES. The scraich storage allo-
cated by DODESI is
S(DODES!) < 165+ 2*NX* (13 + (If (GLBMAX)then1,Else0)) +
Max (3*NX + S(F),10*NX + Max (30.S(ERROR)),S(HANDLE)) (3.5)
INTEGER words. Note that (3.1) is a special case of (3.5), with GLBMAX=.FALSE. . and
S(ERROR)=S(DODESE)=0.
Finally. control over the order of the integration procedure is allowed by

SUBROUTINE DODES2(F, X. NX, TSTART, TSTOP, DT, ERROR, ERRPAR, HANDLE,
GLBMAX, ERPUTS, KMAX, MMAX)

The additional arguments in this subroutine { KMAX and MMAX) control the maximum ord-
er (2*°KM\X) and the maximum leve!l of extrapolation (MMAX) used by the process. The
extrapoiation lozenge is computed in such a manner that only its lower edge need be stored.
Thus, if the length of the lower edge is truncated (limited), the level of extrapolation (the
number of entries computed in the first column of the lozenge) may get arbitrarily large
without increasing the amount of memory needed to store this truncated lozenge. The
subroutine DODES2 allows user control over both the maximum number of columns retained
in the lozenge, and the maximum level of extrapolation permitted. The arguments of DODES2
are the same as those of DODES! with the following additions:

KMAX - The maximum number of columns allowed in the extrapolation lozenge. The maxi-
mal order that DODES2 can achieve is then 2*KMAX.

MMAX - The maximum number of levels of extrapolation permitted. MMAX > KMAX + 2
is required and MMAX > KMAX +4 is a good idea.

There are two additional error states for DODES2:

9 Must have KMAX > 1.
10 Must have MMAX 2 KMAX + 2.

Scratch space of length

S(DODES2) < 5*KMAX + T*MMAX + 3 +
2*°NX*(KMAX + 3 + (If (GLBMAX)then1,Else0)) + (3.6)

Max (3*NX + S(F).NX*KMAX + Max (3*KMAX,S(ERROR)) ,S(HANDLE))
INTEGER words is allocated by DODES2. Note that (3.5) is a special case of (3.6), with
KMAX=10 und MMAX=16.

The subroutines DODES! and DODES?2 require a function subprogram to specify the er-
ror tolerable in the solution. The subroutine DODES uses the default function subprogram
DODESE. This routine is listed below 1o provide an example of what a user supplied ERROR
subprogram might look like. Notice that DODESE can provide error control on a per time-step
or per unit-time-step basis. DODESE can also use either the local value or the global max-
imum absolute value of the solution in determining the error control.

c
c
c
C
c
C
C
c
C
c
c
c
C
C
C
c
c
c
c
C
¢
¢
c
C
C
¢
C
c
c
C
C
c
C
c
C
c
C
c
c
c
c
C
c
c
c
C
c
C
C
C
C
c

LOGICAL FUNCTION DODESE(X,NX T ,DT ERRPAR,ERPUTS, E)

STANDARD ERROR ROUTINE FOR DODES WITH THE OPTION FOR ERROR CONTROL
BASED ON EITHER THE LOCAL VALUE OR THE GLOBAL MAXIMUM OF EACH

COMPONENT .

THE OPTION FOR ERROR CONTROL ON AN ERROR PER UNIT-TIME-STEP OR
ERROR PER TIME-STEP BASIS IS ALSO PROVIDED.

INPUT
X

NX

T

DT
ERRPAR
ERPUTS

3

X=X{(T), THE APPROXIMATE SOLUTION FOR WHICH AN ERROR
CRITERION IS DESIRED.

THE LENGTH OF THE SOLUTION VECTOR X.

CURRENT VALUE OF THE TIME VARIABLE.

CURRENT TIME-STEP. .

TWO PARAMETERS FOR USE IN DETERMINING THE DESIRED ERROR.
IF ERPUTS=.TRUE.. THEN THE ERROR IS T0 BE

PROPORTIONAL TO DABS(DT). OTHERWISE T WILL NOT.

X(1) IS ACCURATE TO A REAL ABSOLUTE ERROR OF EC(I),

=1,.. ., NX, FOR THE SINGLE CURRENT TIME-STEP.

COMMON INPUT

- 1GMAX

OUTPUT

E

THE POINTER TO THE REAL VECTOR OF CURRENT MAXIMUM ABSOLUTE
VALUES ATTAINED BY EACH COMPONENT OF THE SOLUTION.

IGMAX=0 MEANS THIS VECTOR IS NOT USED AND HAS NOT BEEN
ALLOCATED.

THE REAL ERROR VECTOR. E(1) 1S THE ABSOLUTE ERROR
TOLERABLE IN X(1), FOR I=1.,. ., NX.
LET V(1) ABS(X(1)) 1IF IGMAX=0

OTHERWI SE
MAXIMUM(ABS(X(1)(T))) OVER ALL PREVIOUS TIME.
THIS VALUE IS STORED IN THE REAL STACK
POSITION RS(I+IGMAX-1).

AND EPS = 1 IF ERPUTS=.FALSE.
OTHERWISE
= DABS(DT),
THEN
ECI) = EPS * (ERRPAR(1)"V(1) + ERRPAR(2)),
FOR I=1,. .., NX.

FUNCTION VALUE

DODESE

-TRUE. IF EACH X(1) 1S ACCURATE TO WITHIN AN

c ABSOLUTE ERROR OF EC1), I=1,.. ., NX, OTHERWISE .FALSE.
c
C SCRATCH SPACE ALLOCATED - NONE.
c
C ERROR STATES - NONE.
c
COMMON /DODESM/IGMAX K |GMAXD
¢
DOUBLE PRECISION X(NX),T,DT
REAL ERRPAR(2),E(NX)
LOGICAL ERPUTS
c
COMMON /CSTAK/S
DOUBLE PRECISION S(500)
REAL RS(1000).DTPOW, TEMP
EQUIVALENCE (S(1),RS(1))
c
DTPOW=1.0L0D
IF (ERPUTS) DTPOW=DABS(DT)
C
DODESE=.TRUE .
J=1GMAX
c
DO 10 1=1,NX
C
IF (IGMAX.GT.0) TEMP=RS(J)
IF (IGMAX . EQ.0) TEMP=ABS(SNGL(X(l)))
TEMP=DTPOW* (ERRPAR(1)“TEMP+ERRPAR(2))
¢
IF (EC1).GT.TEMP) DODESE=.FALSE.
C
ECI)=TEMP
¢
10 J=1+1
C
RETURN
c
END

A very simple-minded default HANDLE subroutine DODESH is provided with DODES.
It simply returns at the end of each time-step. [t is listed below as an example of what a user
supplied HANDLE subroutine might look like.

SUBROUTINE DODESH(TO X0, ,T1 X1 NX,DT.TSTOP,E)

THE DEFAULT OUTPUT ROUTINE FOR USE WITH DODES.
IT SIMPLY RETURNS.

SCRATCH SPACE ALLOCATED - NONE.

ERROR STATES - NONE.

OO

DOUBLE PRECISION TO.XO(NX).T1,X1(NX} DT.TSTOP

-10 -

REAL E(NX)
c

RETURN
c

END

Figure 1 gives a picture of the basic flow of control through DODES and the user sup-
plied subprograms. DODES calls DODES! with ERROR=DODESE, GLBMAX=.FALSE. and
ERPUTS=FALSE.. DODESI calls DODES2 with KMAX=10 and MMAX=16.

4. Examples

This section provides several examples of the use of the subprograms in DODES. The
system studied is

X =—x
X5 =x3 4.1
Xy=-x
on [0.10], subject to
x; (0) =1
x; (0) =0 4.2)
x3(0) =1
The solution of (4.1) subject 10 (4.2) is,
x) (1) = ~!
xy (1) =sin (1) (4.3)
xy (1) =cos (1).

Thus, we know the exact solution of the problem and can compare the resuits DODES gives
with it
The simplest way 1o solve (4.1) subject to (4.2) would be to code the main program

DOUBLE PRECISION X(3),DT
REAL ERRPAR(2)
EXTERNAL F123 ,DODESH

C
C COMPUTE THE SOLUTION TO AN ABSOLUTE ERROR OF 10**(-6).
C
ERRPAR(1)=0.0D0
ERRPAR(2)=1.0D-6
¢
C DT MUST BE A VARIABLE SINCE DODES WILL ALTER IT.
c
DT=1.0D-2
c
C SET UP THE INITIAL CONDITIONS
C
X(1)=1.000
X(2)=0.0D0
X(3)=1.000

-11 -

CALL DODES(F123,X,3,0.0D0,10.0D0,DT,ERRPAR,DODESH)
WRITE(6,9000) (X(1),1=1,3)
9000 FORMAT(9H Xx(10) = ,1P3D20.8)

sTop
END

and the subroutine

SUBROUTINE F123(T,X NX,FTX)

c

DOUBLE PRECISION T,X(3) ,FTX(3)
C

FTX(1)=-X(1)

FTX(2)=Xx(3)

FTX(3)=-X(2)
c

RETURN

END

The output of this program unit is

X(10) = 4 .53999295D-05 -5.44021120D0-01 -8.39071520D0-01

A skeptical user might next decide to check that the solution is in fact accurate to about
10 ~% count how many times the subroutine F123 is called. as a means of measuring the "cost”
of using DODES, and also check the claim that the cost of using DODES is substantially in-
dependent of the initial vaiue of DT chosen. In that case, the user might write a main program
like

c
C NFCALL WILL COUNT THE NUMBER OF FUNCTION CALLS.
c
COMMON /FCOUNT/NFCALL
DOUBLE PRECISION X(3),DT
REAL ERRPAR(2)
EXTERNAL F123,CHKOUT
¢
ERRPAR(1)=0.0D0
ERRPAR(2)=1.0D-6
c
DT=10.0D0
c
D0 10 I1=1,2
c
C WHEN I=1, DT=10 AND WHEN I1=2, DT=10""(-12).
¢

IF (1.EQ.2) DT=1.00D-12
WRITE(6,9000) DT
9000 FORMAT(10H FOR DT = ,1P1D20.8///)

-12 -

c
X(1)=1.0D0
X(2)=0.0D0
X(3)=1.000
NFCALL=0

c

10 CALL DODES(F123,Xx,3,0.0D0,10.000,0DT ERRPAR,CHKOUT)

SToP
END

The subprogram F123 would then be altered to increase NFCALL by one every time it is
called. Finally, the output CHKOUT subroutine might look like

SUBROUTINE CHKOUT(TO,X0,T1, X1 NX DT ,TSTOP, E)

c
COMMON /FCOUNT/NFCALL
DOUBLE PRECISION T0,X0(3),71,X1(3),DT,TSTOP
REAL E(NX)
c
IF (TO.EQ.T1) RETURN
c

C COMPUTE AND PRINT OUT THE ERROR IN THE SOLUTION X.
c

ERRORI=X1(1)-DEXP(-T1)

ERROR2=X1(2)-DSIN(TI])

ERROR3=X1(3)-DCOS(TI)

WRITE(6,9000) T1,ERROR],ERROR2,ERROR3
9000 FORMAT (SH ERRORS(,1P1D12.3,5H) = ,1P3D12.3)

IF (T1.EQ.TSTOP) WRITE(6,9001) NFCALL
9001 FORMAT(1H ///34H THE NUMBER OF FUNCTION CALLS WAS ,16///)

RETURN
END

The output from this program unit is

FOR DT = 1.00000000D 01

ERRORS(1.9270-02) = 7.313D-08 7.454D-08 -1.437D-09
ERRORS(6.277D-02) = 7.007D-08 7.436D-08 -4.675D-09
ERRORS(3.596D-01) = 5.165D-08 6.946D-08 -2.624D-08
ERRORS(1.2150 00) = 2.188D-08 2.6310-08 -6.941D-08
ERRORS(2.896D 00) = 3.838D-09 -7.156D-08 -1.874D-08
ERRORS(5.5370 00) = 2.3420-10 5.429D-08 5.060D-08
ERRORS(9.049D 00) = 6.7390-12 -6.883D-08 -2.749D-08
ERRORS(1.0000 01) = 2.625D-12 -6.263D-08 4.320D0-08

-13 -

THE NUMBER OF FUNCTION CALLS WAS 341

FOR DT = 1.000000000-12

ERRORS(1.000D-12) = 7.077D-17 1.972D-390 0.000D-39
ERRORS(1.043D-09) = 7.061D-17 1.616D-27 -2.168D-19
ERRORS(1.086D0-06) = 7.046D-17 1.3320-20 -4.337D-19
ERRORS(1.132D-03) = 1.504D-11 1.506D-11 -1.704D-14
ERRORS(4. 463D-02) = 6.7710-11 3.169D 11 4 .3510-13
ERRORS(3.404D-01) = -3.664D-10 -3.078D-10 -9.089D-12
ERRORS(1.193D0 00) = -2.414D-10 2.968D-10 4 .407D-10
ERRORS(2.880D 00) = -2.948D-10 2.873D-10 -2.983D-09
ERRORS(5.492D 00) = -5.616D-11 -1.355D-09 2.1610-09
ERRORS(8.973D 00) = -1.951D-12 6.3150-10 -2.498D-09
ERRORS(1.0000 01) = -5.107D0-13 -2.050D-09 -6.479D-08

THE NUMBER OF FUNCTION CALLS WAS 3585

The results of this simple test bear out the claim that DODES produces results as accurate as
the uscr has requested and that the cost of obtaining these results is indeed quite insensitive to

the initial choice of DT.
The perspicacious reader notes that x; (10) =¢ ~'" which is roughly 10 ™% Thus,
2

xy (10) may not have any good digits when (4.1) is solved to an absolute error of say 10 ™~
He can easily remedy this problem by coding his own crror subprogram to provide for a rela-
tive crror test on x; and an absolute error test for v, and xj.

LOGICAL FUNCTION RAEROR(X ,NX,T DT ERRPAR.ERPUTS.E)

c
DOUBLE PRECISION X(3),7.DT
REAL ERRPAR(2).E(3)
LOGICAL ERPUTS

c

C RELATIVE ERROR FOR X1, ABSOLUTE ERROR FOR X2 AND X3.
c
RAEROR=.TRUE.
TEMP-ERRPAR(1) DABS(X(1))
IF (TEMP.LT.E(1)) RAEROR=.FALSE.
E(1)=TEMP
DO 10 1=2,3
'F (ECIH).GT . ERRPAR(2)) RAEROR=_.FALSE.
10 E(I)=ERRPAR(2)

RETURN
END

The main program would be aliered to read

-14 -

COMMON /FCOUNT/NFCALL
DOUBLE PRECISION X(3),DT
REAL ERRPAR(2)

EXTERNAL F123 ,CHKOUT,RAEROR

C
ERRPAR(1)=1.0D-6
ERRPAR(2)=1.0D-6
c
DO 10 I=1,2
c
IF (1.EQ.1) DT=10.0D0
IF (1.EQ.2) DT=1.0D-12
C

WRITE(6.,9000) DT
9000 FORMAT(1O0H FOR DT = ,1P1D20.8///)

X(1)=1.000
X(2)=0.0D0
X(3)=1.000
NFCALL=0

10 CALL DODESI1(F123,X.3,0.0D00,10.0D0.DT RAEROR,ERRPAR, CHKOUT,
1 .FALSE ., FALSE)

stop
END

and the output subroutine CHKOUT would be altercd to print out the relative error in x| rath-
er than the absolute error. The output from this program unit is then

fOR DT = 1.00000000D 01

ERRORS(1.9270-02) = 7.455D-08 7.454D-08 -1.437D-09
ERRORS(6.2770-02) = 7.461D-08 7.436D-08 -4.675D-09
ERRORS(3.559D-01) = 7.406D-08 6.958D0-08 -2.598D-08
ERRORS(1.1410 00) = 7.3850-08 3.1100-08 -6.745D-08
ERRORS(2.690D0 00) = 7.2490-08 -7.115D-08 -3.3080D-08
ERRORS(4 445D 00) = 6.4650-08 -2.112D0-08 7.711D-08
ERRORS(7.000D 00) = 5.883D-08 6.004D-08 -5.279D-08
ERRORS(1.0000 01) = 5.8730-08 -6.690D-08 4.379D-08

THE NUMBER OF FUNCTION CALLS WAS 357

FOR DT = 1.000000000-12

ERRORS(1.0000-12)
ERRORS(1.0430-09)
ERRORS(1.086D0-06)

7.080D-17 1.972D-30 0.000D-39
7.0690-17 1.616D-27 -2.168D-19
71.0470-17 1.332D0-20 -4.3370-19

oo

-15 -

ERRORS(1.132D0-03) = 1.5060-11 1.506D-11 -1.704D-14
ERRORS(4 463D-02) = 7.0800-11 -3.1690D0-11 4.351D-13
ERRORS(3.377D-01) = 4.756D-10 -2.909D-10 -7.893D-12
ERRORS(1.1220 00) = 6.890D-10 9.083D-12 2.946D-10
ERRORS(2.675D 00) = 2.093D-09 8.637D-10 -3.840D-10
ERRORS(4 4220 00) = 9.452D-09 -1.643D-09 9.480D0-10
ERRORS(6.985D 00) = 1.555D-08 2.275D-09 -1.401D-10
ERRORS(1.0000 01) = 1.566D0-08 -2.2810-09 -1.230D-10

THE NUMBER OF FUNCTION CALLS WAS 371

These examples illustrate the ways in-which the user may control both the accuracy of
the computed solution and the way in which the computed solution is used, saved, printed, etc.

The subroutine DODES2 provides control over the order of the integration method used.
If the user wants to solve a large, say NX=1000, system of ordinary differential equations and
he uses DODES to solve it in DOUBLE PRECISION, then roughly 18,000 DOUBLE PRECI-
SION words of memory will be allocated in the stack, see (3.1). This is because DODES in-
directly calls DODES2 with KMAX=10 and MMAX=16. If, however, the user only wants the
solution accurate to 1%, then it is pretty clear that KMAX=10 (up 10 a 20" order method) is
not needed. In fact, KMAX=3 (a 6" order method) is probably quite sufficient. If he uses
DODES2 with KMAX=3 and MMAX=9, then only about 7,500 DOUBLE PRECISION words
will be used in the stack, see (3.6). Section 5 shows how the user can easily find out what
maximal order is being used by DODES during the integration process. Thus, after one run,
the user can set KMAX and MMAX appropriately.

S. Implementation Details

This section discusses various details of the implementation of DODES by which the user
with sophisticated needs may access the integration process.

A rare, but important, problem arises when the function f(r.x) cannot be evaluated for
some values of 7 and x. For example, the equation x'=x''2 runs into real trouble if x ever
goes negative. This can happen because the solution is typically not computed very accurately
by Gragg's modified mid-point rule, the algorithm relying on extrapolation to provide accurate
answers. Thus, some mechanism must be provided for the user to say that he cannot calculate
1.x). This is accomplished as follows: A labelled common region

COMMON /DODESF/OKAY

contains the LOGICAL variable OKAY which indicates whether or not the call to
F(T.X.NX.FTX) was successful. A subroutine DODESG implements Gragg's modified mid-
point rule and before each call to F, that routine sets OKAY=TRUE. . (The subroutine's
name DODESG follows the PORT library convention of using names, for seldom used global
variables, which have a digit as their second character, to avoid conflicts with user variables.)
Thus, the user need only set OKAY (=FALSE.) when he cannot evaluate f(rx). When
DODESG detects OKAY=FALSE. upon return from a call 10 F, it returns to its caller, the
step-size and order monitor DSXTRP {14). The default response of DSXTRP is to lower DT
by a factor of 103 and do a few other reasonable things. In HANDLE, the user may elect to
override that default action by simply lowering DT himself. However, this leads to an 8" error
state in DODES - which an alert reader may have noticed was omitted between error states 7

-16 -

and 9 in section 3 - The subroutine HANDLE cannot raise DT when OKAY=FALSE. .
The following subroutine illustrates the use of OKAY when trying to solve x'=x! 2

SUBROUTINE F(T X NX, FTX)

COMMON /DODESF /0KAY
DOUBLE PRECISION T, X(NX), FTX(NX)
LOGICAL OKAY

IF (X(1).GE.0.0D0) FTX(1)=DSQRT(X(1))
I'F (X(1).LT.0.0D0) OKAY=.FALSE.

RETURN
END

If GLBMAX=TRUE., then the maximum absolute value of each component of the solu-
tion is to be recorded by DODES. This information is stored in the labelled common region

COMMON /DODESM/IGMAX,IGMAXO

in the form of pointers IGMAX and IGMAXO into the stack [9]. IGMAX is the pointer to
the REAL vector, of iength NX, of current maximum absolute values attained by each com-
ponent of the solution since the start of the integration procedure at time TSTART. That is,
the maximum absolute value of x,;(¢) achieved so far during the run is stored in the REAL
stack at location RSUUIGMAX+I-1). IGMAXO is the pointer to the REAL vector, of length
N X, of maximum absolute values attained by each component of the solution, as of the previ-
ous time-step. IGMAX=0 means that GLBMAX=FALSE. and these vectors are not 10 be
used and have not been allocated in the stack.

The monitor DSXTRP [14] provides a labetled COMMON region
COMMON /DIXTRP/ICOM(9)

which contains information about the current status of the integration process and also pro-
vides a means for altering the way DSXTRP does its job. The truly ambitious reader may con-
sult [14] for the details of what this common region contains and what can be done through it.
The first two elements of this region are useful in following what order process is being used
by the step-size and order monitor DSXTRP. ICOM(1) is the current level of extrapolation,
that is, the number of entries already computed in the first column of the extrapolation
lozenge. ICOM(2) is the size (number of columns) of the optimal lozenge as predicted for the
next time-step. 1ICOMI(1) is defined for use by any of the user subprograms F. ERROR and
HANDLE. However, ICOM(2) is only defined for use by HANDLE.

When using a "small” value of KMAX, it would be wise to monitor the maximum value
of ICOM(2) (the number of columns in the "optimal" size lozenge) used during the integra-
tion process. If that value is equal 10 KMAX, then KMAX should be increased for subsequent
runs with similar input data. This should lower the cost of these later runs.

(1]
2]
(3]
(4]
(5]

(6]
(7]

18]

(91

(10]
(1
[12]
(13]
(14]
(15]
(16]
71

(18]
(19)

-17-

Bibliography

R. Bulirsch and J. Stoer, "Fehlerabschatzungen und Extrapolation mit rationalen Funk-
tionen bei Verfahren vom Richardson-Typus", Num. Math. 6, 413-427 (1964).

R. Bulirsch and J. Stoer, "Numerical Treatment of Ordinary Differential Equations by Ex-
trapolation Methods”, Num. Math. 8, 1-13 (1966).

P. A. Fox, "DESUB : Integration of a First Order System of Ordinary Differential Equa-
tions”, Mathematical Software, (Ed. J.R. Rice), Academic Press, pp477-507,1971.

P.A. Fox, A.D. Hall and N.L. Schryer, "Machine Constants for the PORT Library", to ap-
pear.

P. A. Fox, "A Comparative Study of Computer Programs for Integrating Differential Equa-
tions”, Comm. ACM 15, 941-948 (1972).

P. A. Fox, The PORT Library Project, to appear.

C. W. Gear, "The Automatic Integration of Ordinary Differential Equations”, Comm. ACM
14, 176-179 (1971).

W. B. Gragg, "Repeated Extrapolation to the Limit in the Numerical Solution of Ordinary
Differential Equations”, Thesis, UCLA (1963).

A.D. Hall and N.L. Schryer, "A Portable Dynamic Storage Allocator for FORTRAN Pro-
grams", 0 appear.

A.D. Hall and N.L. Schryer, "A Centralized Error Handling Facility for Portable FOR-
TRAN Libraries”, to appear.

T.E. Hull, W.H. Enright, BM. Fellen and A.E. Sedgwick, "Comparing Numerical Methods
for Ordinary Differential Equations”, SIAM J. Numer. Anal. 9, 603-637(1972).

F.T. Krogh, "On Testing a Subroutine for the Numerical Integration of Ordinary
Differential Equations", J. of the ACM 20, 545-562(1973).

B.G. Ryder, "The PFORT Verifier: User's Guide", Computing Science Technical Report
#12, Bell Laboratories, Murray Hill, N.J., 1973: rev. 1975.

N.L. Schryer, "An Extrapolation Step-Size and Order Monitor for Use in Solving Ordinary
Differential Equations”, Proceedings ACM National Meeting, November, 1974

N.L. Schryer, "An Extrapolation Step-Size and Order Monitor for Use in Solving Ordinary
Differential Equations”, to appear.

H.J. Stetter, "Asymptotic Expansions for the Error of Discretization Algorithms for Non-
Linear Functional Equations”, Num. Math. 7, 18-31 (1965).

J. Stoer, "Extrapolation Methods for the Solution of Initial Value Problems and their Prac-
tical Realization”, Conference on the Numerical Solution of Ordinary Differential Equa-
tions, University of Texas at Austin, 1972.

D.D. Warner, A Stiff Differential Equation Solver, in preparation.

T. Yu, "Comparision of Numerical Methods for Ordinary Differential Equations”, Techni-
cal Report CNA-73, 1973, University of Texas at Austin.

b 34N9I4

39VXOW S3A@Q 3HL NI 34V X08 AAV3H 3H1 NI SWVHO0udBNS 1TV

d¥1XSa,

||||||I|I||T|III|II|-

| 253080
' 1
353004 953004 1S3080 HS300da
[--ml\ B
S30¢qa |

Y v _ |/
(3530030 ¥0) YPHY3 4 3INILNOHBNS WVH90HJaNS (HS3Q@Q HO) INILNOHBNS
WYH90HJENS 0317ddNS H3SN 0317ddNS ¥3SN ONITIVD @INddNS H¥3SN 31ANVH 03NddNS d43sN

