Computing Science Technical Report No.

A Tutorial on Galerkin's Method,
using B-splines,
for Solving Differential Equations

N. L. Schryer

September 1976

A Tutorial on Galerkin’s Method, using B-splines, for Solving
Differential Equations.

N. L. Schryer

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This note is a tutorial description of Galerkin’s method, and its imple-
mentation using B-splines, for solving linear one-dimensional self-adjoint boun-
dary value problems. The emphasis is on motivating and making clear what
Galerkin’s method is, what it does, what it is useful for and what must be done
to produce a practical program for implementing it. The generalization of
Galerkin’s method to other equations, including nonlinear and non-self-adjoint
equations, is discussed and motivated.

Galerkin’s method with B-splines allows approximation of the solution of
the equation to within O(h*), where h is the mesh spacing used and k > 2,
the order of the B-spline, is any integer the user desires. For most problems,
the "optimal" order k is between 4 and 6. This higher order rate of conver-
gence makes Galerkin’s method faster and much cheaper to use than finite
differences.

An automatic and reliable error estimation scheme is presented for use
with Galerkin’s method using B-splines. Several sample problems are then
solved and the numerical results discussed.

September 17, 1976

A Tutorial on Galerkin’s Method, using B-splines, for Solving
Differential Equations.

N. L. Schryer

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

This note is a tutorial description of Galerkin's method, and its implementation using B-
splines, for solving linear one-dimensional self-adjoint (divergence form) boundary value
problems. The emphasis is on motivating and making clear what Galerkin’s method is, what it
does, what it is useful for and what must be done to produce a practical program for imple-
menting it. The generalization of Galerkin’s method to other equations, including nonlinear
and non-self-adjoint equations, is discussed and motivated. A detailed mathematical analysis of
Galerkin’s method, which this paper tries to avoid as much as possible, is available in [23].
Anyone interested in the theoretical underpinnings of Galerkin’s method is urged to browse
through that excellent text.

The equation studied is
(a(x)y (x))+b(x)y(x) +c(x)=00n (L.R) (1.1
subject to boundary conditions
apy(L)+BLy (L) =y,
(1.2)
ag y(R) +Bry (R) =yg

where a(x) > 0, 6(x) £ 0, and c(x) are given functions on (L,R), a; ,ag.B..Br ¥y, and
yr are given constants obeying

a[_ﬁL <0 and (aL, BL) = (0,0)
(1.3)
aRﬁR 20 and (aR, BR)¢(0,0)

Under reasonable assumptions about the smoothness of the coefficients a, b and c, the solution
of (1.1) subject to (1.2) and (1.3) is known to exist and be unique. If (1.3) is violated, the
solution may not exist, and even if it does, it may not be unique.

Problems of this type arise in many situations [16,19,20] and their solution must be
accomplished cheaply, accurately and reliably. The numerical solution of (1.1) has traditionaily
been accomplished using classical finite differences [14]. If the mesh spacing is 4, then the
error in the finite difference approximation to the solution is 0(h?. The popularity of finite
difference methods resulted mainly from their flexibility and ease of implementation, as well as
the fact that there was no known real alternative method for practical problems.

However, there is now an alternative method to finite differences - Galerkin’s method
using B-splines. It is easy to implement (although not as easy as most finite difference tech-
niques), extremely flexible and efficient, and very robust.

Galerkin’s method (2,3,12,21,23] is a technique for finding the "best” approximate solu-
tion of (1.1) in any space of functions the user specifies. Galerkin’s method basically finds the

projection of the true solution onto the space given to it. The space of piecewise polynomials
given by B-splines [6,7.9] can be used to approximate aimost any function very accurately.
Thus, the use of Galerkin’s method to find the best approximate solution of (1.1) over the
space of B-splines is a very robust and accurate numerical solution technique.

In particular, Galerkin's method with B-splines of order & > 2 allows approximation of
the solution of (1.1) to within O(k"), where 4 is the mesh spacing used. For most problems,
the "optimal" order & (the one which minimizes the cost of solving the problem) is typically
between 4 and 6. These higher order methods are faster and much cheaper to use than finite
differences.

Throughout this paper the size of a function f over an interval [L,R] is measured by the
maximum norm

A= Max [£ (1.4)
velL.R]
and the size of a vector v = (v, - - -, vy) is measured by the maximum norm
vl = Max |v| (1.5)

These are the only norms we shall use or define for functions and vectors.

Section 2 discusses the definition and properties of B-splines. Section 3 discusses the
Rayleigh-Ritz method and shows that it converges. Section 4 defines and motivates Galerkin’s
method. Section 5 shows how Galerkin's method is actually implemented on a digital com-
puter. Section 6 describes a robust and reliable technique for estimating the error in the Galer-
kin solution, so the user of Galerkin's method can tell how good an answer has been obtained.
Finally, section 7 presents several numerical examples.

2. B-splines

The way in which the approximate numerical solution of (1.1) is to be represented is a
very important decision. The choice of representation affects the entire solution process.
Specifically, we would like to choose a space of functions, out of which we will try to obtain the
element closest to the solution of (1.1). This space should have several nice properties, includ-
ing being (1) easy to work with and (2) capable of approximating the solution accurately.

Such a representation exists - expansion in B-splines of order £ [6,7,9). This is a method
for representing functions by piecewise polynomials, that is, polynomials of degree k—1 or less
over each sub-interval of a mesh or grid. Here the integer k is any number k > 2 the user
desires. The piecewise polynomial representation is required to satisfy certain continuity res-
trictions at the end points of each mesh sub-interval. Specifically, let m={x,, - - . x,}].
where L =x, € x; € -+ £ xy=R, be a grid on the interval (L,R). Let m, be the multipli-
city of x,, or the number of times x, appears in the list 7. The space of B-splines of order &
defined on the mesh = is defined to be the collection of all functions /

(2.1) which are polynomials of degree < k on each interval (x,, x,,,) for i=1, ... N—1,

(2.2) for which dkAl‘m’f(x/)/ctxk_l—m‘ exists and is continuous at each x,, for i=1, ... N,

when viewed as a function defined only on [L,R], and
(2.3) for which f = 0 outside [L,R].

The multiplicity m, of a point x, is restricted to be in the range 1 < m, £ k. For m =1
we have d*72f /dx*~? continuous at x,. This is the most continuity which can be imposed at x,
without making f a polynomial of degree k—1 on (x,_,, x,4;). For m, =k the condition that
d~'f/dx~' be continuous is interpreted to mean that f is continuous from the right (but not
necessarily from the left) at x = x,, for x, < R, and continuous from the left if x, = R. This
means that B-splines are continuous at the end points of the mesh when viewed as functions
defined only on [L,R). This collection of functions is denoted by B,,. These B, , spaces

have rather nice approximation properties, as summed up by deBoor (6], in the case when
ml = k = m\':

Theorem 2.1

Let f be any function with /' through f*’ continuous on [L,R], where £ denotes the
j" derivative of f Let h=|m| = IMax\ | x,,1 —x | be the largest mesh interval length.
TN

=

Then there is an element g of B, so that
A =g || € Clif) ht

for 0 < j < k, where C(k,f) represents a constant which depends only upon k and f, but not
h.

That is, as h—0, the error in the best B-spline approximation to f goes to zero like h*,
the error in its derivative behaves like h* I etc.

Note that this theorem makes no assumption about the relative spacing of the mesh
points of = in order to get O (h*) error. However, finite difference methods require a uniform
mesh to achieve an error of O(h?). Any deviation from a uniform mesh results in O (k) error
for such methods. In many problems, the ability to grade the mesh with B-splines and still get
O (h*) error is a decided advantage.

In practice, k is usually taken to be 4, 6, 8 or even 10, depending on what the function /
looks like and how much accuracy is desired. k is usually taken to be even due to the rather
natural way in which such splines arise and their smoothing properties when used to approxi-
mate functions described by discrete data [5]. Typically, the more accuracy desired, the larger
the value of k should be. For example, if k=8 and the mesh length A is halved, then Theorem
2.1 indicates that the error should decrease by a factor of 2% = 256. However, as we shall see,
the work needed to solve a problem using B-splines is O (NKk3). Thus, a k=8 solution will cost
8 times as much as a k=4 solution for the same mesh. Hence, the optimal k results from
minimizing O (N, k%), where N, is the number of mesh points needed to solve the problem to
the desired accuracy using a k order B-spline. This optimization is highly problem dependent.

A computationally convenient basis exists for the spaces B, . The dimension of B, , is
N—k and the basis consists of elements B (x), i=1,..., N—k. A complete description of the
B is given in [9] and [7]. Briefly, when the multiplicities of the first and last mesh points are
both &, so that

X = o=x
and
Xy_k4] = "1 = XN

then the main properties of the B, (x) follow:

(2.4) Each B, is non-zero only on [x,, x,,x] and is identically zero elsewhere, as well as at
Xph oo, x,_ and X, 4k41, - - - » Xy, even if they are in [x,, x,]

(2.5) The sum B(x)+ - - - +By_,(x) is identically one.
(2.6) Each B, obeys 0 < B,(x) < 1 everywhere and possesses only one maximum.
These are very nice properties and will be used in later sections.

The convergence result of Theorem 2.1 is independent of the multiplicities m, of the inte-
rior points x, (k < i € N—k) of the mesh. Usually, for smooth functions f, m,=1 is taken
for all these interior (that is, strictly between L and R) mesh points.

The end points of the mesh typically have multiplicity k since the function f usually has
F(L) # 0 and f(R) # 0, and the elements of B, , cannot be non-zero at L and R, unless

my=k =my because of (2.2) and (2.3). In fact, relations (2.2)-(2.5) show that the only B,

which are not zero at L and R are B, and By_;, and these values are respectively simply
B[(L) =1 and BN_;‘(R) = 1.

If the function f has a discontinuity in say its ;" derivative, at x,, then m, =k~ is chosen
because this allows the elements of B, to have the same behavior. If a smaller multiplicity
were chosen, the j” derivative of all the elements of B« would be continuous at x,, and the
best fit to ffrom B, , would not be very good at x,.

Another important propveriy of B-splines is their numerical stability or condition. Since any
B-spline f'is of the form f = 3 a, B, and each B, obeys 0 < B, <1 we see that if ||f|] is small

=1
compared with ||a||, then many significant digits are lost when computing f from

a,, - ,ay_, in floating-point arithmetic [25]. Specifically,
N-k
d < Logo(llall/|| L a B (2.7)

=1

decimal digits are lost, due to cancellation, in evaluating f. In [6] de Boor shows that
N—k
Y a8l > Cllall (2.8)
=1

where C; is a constant depending only upon k, and therefore
d < LOgm(Ck_l).

In particular, he shows for a uniform mesh, one where all the mesh intervals have the same
length, that

C, = 107 (2.8)

Thus, when evaluating a B-spline defined on a uniform, or nearly uniform, mesh, we would
expect to lose no more than about k/5 decimal digits. This is a very satisfactory result since it
indicates that, at least for uniform meshes, the conditioning of the B-spline basis is independent
of the size of the mesh.

3. Rayleigh-Ritz Method

The Rayleigh-Ritz method for solving (1.1) approximately is extremely powerful and is
directly applicable to problems substantially more complex than (1.1). It has a very rich and
successful history [2,3,4,16,20,21].

This section begins by introducing the Rayleigh-Ritz method for a simple, classical prob-
lem where a variational or "energy"” principle can be applied. The convergence properties of the
Rayleigh-Ritz method for this canonical problem are obtained simply and concisely.

Consider the simple but classical problem of Poisson’s Equation (which is (1.1) with
a=1,b=0andc=—-f),
y'=f(x) on(0,1) (3.1)
subject to
y(0) =0=y(1) (3.2)

where f is some sufficiently smooth function on [0, 1]. Physically, this may be viewed, for
example, as either finding the electrostatic potential y given the charge distribution f or finding
the displacement of an elastic string, clamped at the ends, subject to a transverse force f (8]
An equivalent formulation of these problems is the following "variational" principle:

Find a smooth function y which obeys (3.2) and minimizes the "energy" F(w) given by
|
1 N2
Fiw) = [(= +wf) dx.
(w) {(z(w) wf) dx (3.3)

This formulation of the problem uses the principle of "least energy” [8] to find the potential, or
displacement, y. It is rather easy to see that (3.3) and (3.1) are equivalent. For consider the
function g(e) = F(y +en) where € is a real number and 7 is some smooth function which
satisfies (3.2). Then the statement that y minimizes F(w) implies that g(0) is the minimum of
g and thus g' (0)=0, since y makes F(w) smallest over all smooth functions, including those of
the form y +en. But g’ (0)=0 means that

1
f (yn'+nf)dx =0
0
Using integration by parts and (3.2) we then have
1
[(" +5)nax =0 (3.4)
0

for any suitably smooth function % satisfying (3.2). This clearly means that (3.1) must hold.
The reverse argument is just as easy and shows that any solution of (3.1) is a minimizer of
(3.3).

Now there is a venerable and powerful technique for approximately finding functions y
which minimize functionals like F(w). It is called the Rayleigh-Ritz method [8] and it has
been used for many years as a tool for minimizing such functionals. The idea is quite straight-
forward - Pick a few basis functions wy, . . ., wy which are smooth and satisfy (3.2). Then any
linear combination w of the w, of the form

is also smooth and satisfies (3.2). All linear combinations of the form (3.5) form a linear sub-
space of the space of all smooth functions. This space is called the span of wy, ..., wy and is
denoted by < w,, ... ,wy>. The span is called a linear space since the sum of any two ele-
ments in it is still in it, also any scalar multiple of an element remains in it. If the w, are judi-
ciously chosen, then minimizing F over the large subset (sub-space) <w,, ..., wy> of the
space of all smooth functions should give a good approximation to the sotution of (3.1)-(3.2).
Specifically, we choose a,, ..., ay to minimize the function

1(01 aN)EF(alwl"' +.aNWN). (3.6)

Minimizing (3.6) is an easy task since [/ is a quadratic function of its arguments. The
minimum of /is attained at the point where

which leads to the equations
|
0=f [2a,w}w,’+w,f dx, i=l,..., N. 3.7
0 i
Now consider the symmetric, positive-definite (as we shall see later) matrix 4 given by

1
A, =f w,'w"dx (3.8)
0

! 1
and the vector b = (—f wi fdx ,..., —f wnySfdx) . Then the solution a of the linear
0 0

system of algebraic equations
Aa=5b (3.9)

is the vector of coefficients a for the linear combination (3.5) which minimizes (3.6). The
numerical solution of the above system (3.9) is a well-understood and well-posed problem and
is easily solved [13,25].

Thus, the Rayleigh-Ritz method of minimizing (3.3) over finite dimensional subspaces of
smooth functions reduces the original problem (3.3), whose generalizations nobody knows how
to solve directly and constructively, to a problem (3.9) which can be easily solved. Moreover,
if the basis-functions w, are well chosen, the function v which results from minimizing (3.6)
should be quite close to the solution y of (3.1) and (3.2).

If B-splines are taken as the basis-functions w,, then, since they can approximate any
smooth function w to within O(h*), it is clear that they can approximate the solution y at least
that well. The question is:

Does the Rayleigh-Ritz method produce a B-spline which is as accurate as can be achieved.

O(h*)?

The answer is, of course, yes. The proof of such results {2,3,4,24] is in general a rather com-

plicated matter. However, a weak form of the convergence result can be easily obtained for the
simple example under consideration (3.1)-(3.2).

Let 7 be any mesh on [0, 1]} with I\he;‘ multiplicity of x; and xy both k. Then, since the

Rayleigh-Ritz approximate solution y = 3 a4, B which minimizes /(a, . . ., ay_;) must also
Izl

satisfy the boundary conditions (3.2), we see that a, = 0 = ay_,. Thus, the subspace of B,

which obeys (3.2) is just the span of B,, . . ., By _, -, and the Rayleigh-Ritz basis functions w,

are simply B8, for i=1, ..., N—k-=2.

It is assumed that any mesh 7 is chosen so that
Max |x . —=x|/Min |x —x| < p (3.10)

where u is some fixed constant. This relation simply assures that the mesh 7 cannot stray too
far from being uniform. This restriction on the mesh is important and will be used in later sec-
tions.

Now note that (3.3) is equivalent to (3.4), which in turn is equivalent, using integration
by parts, to

_;f(y’n’-t—fn)dx=0, (3.1
But, from (3.7), the Rayleigh-Ritz solution is just the solution y of
j (PB+fB)dx =0, i=2,..., N—k—1, (3.12)
0
where ve< B,, ..., By_i_1>. Since (3.11) must hold, in particular, for y = B,, we then

have, subtracting (3.12) from (3.11) with n = B,
|
=58 ax =0 (3.13)
0

This relation states that 7 is also the solution of

1
Min [=pax. (3.14)

re< By . By 1 >%

That is, y minimizes the above measure of the difference between y and the solution v. This is
the first key observation:

The Rayleigh-Ritz method does in fact minimize some measure of the error in the approximate
solution, even though it doesn't minimize the error ||y — V|| itself.
We know from Theorem 2.1 that
I
Min [(y'=i)ax = 0t)?
veB L0
A natural question now arises:
Is the minimum achieved in (3.14) also O (h*~')? ?
We can show that the answer is yes as follows. By Theorem 2.1 there is an element v of B,
for which both ||y (x) —v(x)|| = O(h* and ||p' (x) =v' (x)|| = O(h*"'). However, Theorem
2.1 does not guarantee that v will satisfy the bounde\;ryk conditions (3.2). We must show that v
comes within O (h* ') of satisfying (3.2). Let v = Y 4B, then since B,(0) = 1 and all other

=1

B(0) =0 we have b, = 0(hn". Similarly, by_, = O(h‘)‘\ ATl}us, by simply setting
by =0 = by_, we obtain Ve< B,, .. ., By_, >, givenby i = Y b B, which differs from

=2
vby b,B(x) +byv_Byv_,(x). We shall show that vis the function we are looking for. Anyone
not interested in the proof of this result may skip the next paragraph.

We have [7] that (2.1)-(2.5) imply
B|(X) = (XA¢l_X)A71/(Xk+|_X|)‘ ! and

By i (x) = (x —xy)M ey —=xy 0!

Thus,
v =0 < b [1Bi(x) |+ by (]IBY «(x)]
(x, . —x)*? (x —xy)* 7
=0 (k-1 | —
X —x)T Oy —xv)7 7]
=0
making use of the mesh restriction (3.14). This gives us ||v'— ' || = O(h* ") and thus

| 1
f(y'—f)')z dx =f(y'—v'+0(h**‘))2dx
0 0

i
O%—

! |
(y'=v)lde+20h* ')f (y'—v") dx+f O(h* 1) dx
0 0

=0(hn N
This shows that
|
J (r=9)2ax = 0(nt)2
0
for some element vof < B,, ..., By _, -, > and we then have

Min [(r=i)tax = oty (3.15)

ve< By By, 1>

With this knowledge we can ask how big the error y —j is in terms of y' — §', which we
know has been made as small as possible. Let f =y — 7. The starting point is the derivative
relation, which uses the fact that £(0) = 0,

flx) = J;‘f' (&) d¢
which gives
|70 < JI/" (&) | de.
We can then apply the Cauchy-Schwarz inequality [8]
zl.f(x)g(x)ldx < (Z fzdx)”z(.:!.gzdx)”z
to the right-hand-side of the above relation, with g = 1, to get
fo] < x[’/z(l(f'(ﬁ))idg)'?
which in turn gives
1
Iy =5l < ({ (y'=9")dx)" (3.16)

This is the second key observation:

The error in y is bounded above by a measure of the error in p', and the latter is minimized by
y.

By combining (3.15) and (3.16) we have

[ly =31l = 0 (.17
This shows that the Rayleigh-Ritz method converges when applied to (3.1)-(3.2) and even
shows that the convergence rate is at least as fast as #* !

The same resulit, (3.17), can be easily obtained for (1.1) subject to y(0) =0 = y (1) using
precisely the same techniques as were used above for (3.1)-(3.2). The interested reader is
invited to obtain this result as an exercise. The "energy" associated with the equation

(ay’)'+by+c=0 onl0,1]
(3.18)
y(0) =0=y()

1
f{—l-a(y’)z-‘-lbyz—cy]dx (3.19)
) 13 2

and a function y solves (3.18) if and only if it also minimizes (3.19). By assuming that both
[la]l and ||&6]] are finite, and that a(x) > o >0 for some constfht o, the error in the
Rayleigh-Ritz solution of (3.19) can easily be shown to be no greater than O(h*~") using pre-
cisely the same arguments as were used above. Such a proof of O(h*~') convergence for the
Rayleigh-Ritz solution of (3.18), under the ahove assumptions, is presented in Appendix 1.

We have seen that the error in the Rayleigh-Ritz approximate solution of (1.1) subject to
y(L) =0 =y(R) is at most O(h*7").

The actual rate of convergence for the Rayleigh-Ritz solution of (3.18) is O (h")

The proof of such results is rather deep and complex [24], and we must be content to use the
above simple arguments to obtain O(h*~!) convergence rate estimates.

4. Galerkin’s Method

So far we have discussed the Rayleigh-Ritz method, but what is Galerkin’s method? This
section first formulates the general Galerkin equations. Finally, a general statement is made
about the relation between Galerkin’s method and variational principles, and why Galerkin’s
method may be viewed as an extension of them.
The starting point for Rayleigh-Ritz is an "energy" functional like (3.3) or (3.19) and it
results in equations like (3.12) or more generally
1
[(~ap'B/+b7B,+¢B) dx =0 (4.1)
0

for (3.19).

Galerkin’s method starts from another point of view but arrives at precisely the same
result as Rayleigh-Ritz gives. Specifically, Galerkin’s method for (3.18) is to solve

1
[(@p') +bp+c)B dc =0, i=2,... N—k-I (4.2)
0

for y. The idea is simply to make the error in the differential equation (3.18) small by making
it "orthogonal” to < By, ..., By_,_1 >. Actually (4.2) is not used in practice, rather integra-
tion by parts is used to convert it into

1
f (—a§'B'+byB, +cB,) dx =0,
0

using y(0) = 0 = y(1), which is identical to the Rayleigh-Ritz equations (4.1) for (3.18). In
fact,
Whenever there is an energy functional for a differential equation, the Rayleigh-Ritz method
applied to that differential equation is the same as Galerkin 's method for that equation.

To show the general nonlinear self-adjoint case {2] and the equivalence of Rayleigh-Ritz and
Galerkin’s method, the two formulations are presented below for the equation

(ay')' = f(x,y) on (0,1) (4.3)
subject to y(0) = 0 = y(1). The Rayleigh-Ritz functional for (4.3) is (2]
1 1 wix)
[|Fao)+ [rce ae|ax (4.4)
o |2 0
and its minimum over < B,, By_x-1 >, J, is attained when
|
0= [(ay'B/+/(x5) B) dx (4.5)
0

Thus, (4.5) are the Rayleigh-Ritz equations for (4.3). The Galerkin equations for (4.3) are
1
[(@Y =rx)Bax =0 4.6)
0

which, using integration by parts, is exactly (4.5). Thus, for this very general class of equa-

tions, the Rayleigh-Ritz and Galerkin solutions are identical, and a proof of convergence for
Rayleigh-Ritz also shows that Galerkin’s method is convergent.

- 10 -

Since Rayleigh-Ritz requires an "energy" functional, its use is limited to differential equa-
tions which have such functionals. Galerkin's method does not need or use an energy func-
tional and can thus be applied to equations where Rayleigh-Ritz cannot. For example, the gen-
eral, non-self-adjoint, linear two-point boundary value problem

ay"+by'+cy+d =0 on (0,1) (4.7)

subject to y(0) =0 = y(1) has no known Rayleigh-Ritz functional. However, Galerkin’s
method for (4.7) is trivial to write down:

1
0= [B (ap"+bp'+cp+d)ax, i=2,.. .. N—k—1 (4.8)
0

which, as usual, is re-written as
i

-

0

—(aB)' 7'+ Bby'+ By +Bd | dx (4.9)

This technique converges as O (h*) even for this non-self-adjoint equation [21, 24].

In general, even for nonlinear differential equations subject to y(0) =0 = y (1), writing
down the Galerkin equations is trivial and may be summed up as:

|
0= f (the error in the differential equation) B, dx, i=2, ... ,N—k—1. (4.10)
0

If the differential equation is nonlinear, then so is the Galerkin system of equations, obviously.
Thus, at least conceptually, writing down the Galerkin equations is a very easy matter. [t is in
this sense that Galerkin’s method may be viewed as an extension of the Rayleigh-Ritz method:

Galerkin’s method can be applied to literally any differential equation, but when applied to a
differential equation with an "energy" functional, it agrees exactly with the Rayleigh-Ritz solu-
tion.

The above discussion has shown that Galerkin’s method is rather simple to describe, even for
nonlinear equations, and that it converges for simple, linear equations like (1.1) subject to
y(©0) =0 =y(1).

We now need to formulate the Galerkin equations for the general case of (1.1) subject to

(1.2). For i=2,...,N—k-1 the following usual Galerkin equations hold
R
0= [(—ap'B/+ 9B +cB,) dx (4.11)
L
When we write
y=Y aB, (4.12)
/
relation (4.11) becomes the system of linear equations
N-k R R
Y of (—6BB +aBB) dx = [B dx, i=2,... N-k-L. (4.13)
=L L
Equations (4.13) may be viewed as determining a,, . .. ,ay—«-;. Equation (4.13) cannot be

used for i = 1 and /i = N—k since the integration by parts which led to (4.11) is not valid for
these values of . We now need equations for determining a, and ay_,.

The previous Galerkin formulations of this section were based on the assumption that the
boundary conditions were homogeneous Dirichlet, that is y(L) = 0 = y(R). These boundary
conditions determined the coefficients a, and an_, in the Galerkin solution, namely
a, =0 = ay_,. The same principle still holds, even for boundary conditions like (1.2). The

211 -

boundary conditions do determine a, and ay_4, although not as simply as in the
y(L) =0 =y(R) case.

In determining a,, there are two basic cases to consider. The first case is when 8, =0,
which gives y(L) =y, /a,. In this case, then, a; = y(L) is known and any appearance of a,
in (4.13) can be moved to the right hand side of those equations and the equation for a, is
simply

ay =y, /. (4.14)

The second boundary case is when 8, # 0. Here the value of (L) = a, is unknown a
priori. A natural and logical, but improper, way to specify a; would be to force the boundary
condition (1.2) to hold exactly at x=L:

aLy(L) +6Ly,(L)=')'[_ (4.15)
It is easily seen that this cannot be a proper thing to do, for (4.15) would mean that
aje(L) +B,e' (L) =0 (4.16)

where e = y — 7 is the error. But we want, and expect, e to be O(h*) and know that e’ cannot
in general be better than O (h*~"). Thus, since in general a; # 0, (4.16) implies that

(L) = —PLory = 0nt) @.17)

ajp
and forcing the boundary conditions to hold exactly at x=L results in a lower convergence rate
than is possible, expected and optimal.

A similar argument can be made against doing the next most "obvious" thing, namely
forcing the boundary conditions to hold in the "Galerkin" sense by requiring

R
[Cary+85'=v0) Biax =0 (4.18)
L

to hold. Thus, the boundary conditions alone, in a vacuum, are not sufficient to determine a,.

The only other information available is that provided by the differential equation (1.1)
itself. This observation results in the following formulation of the equation for a;, and requires
a detailed look at the derivation of the Galerkin equations.

The starting point for Galerkin’s equations for (1.1) is the relation

R
0= [((a) +bp+c) B dx
L

which, using integration by parts, becomes

R
0= [(—ay'B/+byB +cB) dx + aBj'|f. (4.19)

L
For i=2, ..., N—k—1 we have B(L)=0= B(R), by (2.2)-(2.6), and thus for
i=2, ..., N—k—1 equations (4.19) are exactly (4.11). The previous discussion of the boun-

dary conditions at x=L, when 8, # 0, then leads to a natural, and healthy, interest in (4.19)
for i=1. For in the case where 8; #= 0 we can solve (1.2) for

y'(L)=—;f—%—LL—y(L) (4.20)

Equation (4.19), as written, contains no information about the boundary conditions. However,
by replacing ' (L) by the right hand side of (4.20) in (4.19) for i=1 gives

-12 -

R
0= [(—ap'Bj+b9B,+cB,) dx - a(L) (X2 — 251y @21)
L B. By

This is a slightly re-written Galerkin equation for /=1 which does contain information about the
boundary conditions.

Equation (4.21) is the correct equation for determining a, when 8, # 0 and a similar
relation holds for ay_, when Bz # 0. This scheme is shown to be convergent as O (k%) in (4].
Now that we have the equations for the Galerkin solution §, namely (4.11) and either

(4.14) or (4.21), we need to find out what equations they represent for a;, ...,ay_,. Let §,
denote the s%andard Kronecker delta function, that is 8,; = 0 for all / # jand 8, = 1. Also,

let (f.g) = f f(x)g(x) dx for any functions fand g Then we have the following four cases,
L

where care has been taken to write the equations so that their symmetric and banded structure
is clear:

Case 1: B, =0 =g

a)=vy/ag
and fori=2,..., N—-k-1,
N—k—1

Y a,((aB,B) - (bB,B)] =

j=2
(c.B) +£L(— (aB|,B)) + (bB,,B)) + (4.22)
L
R (—(aBy_,,B) + (bBy_i.B))
ap
and finally,
an_x = YR/OIR

Case 2: ﬁ[_ # 0= BR'
Fori=1,...,N—k-1,

N—k—1 ap
2 a,[(ﬂB;,B,’)_(bB/,B,)"8,18,10(1‘)?] =
L

j=1

(c,B,)+%R—(—(aB;v_k,B,') +(bBy_.B)) - (4.23)
R
YL
5,a(L) 2L
a Bt

and finally,
ay_x = yr/ar
Case 3: B; =0 #= Bg.

ay=y.lag
and fori =2, ...,N—k,

N—k ag
Y a,[(aB;,B) —(bB,,B) +a (R)S,.N—kﬁ,./v-kﬁ—] =
] R

213 -

(C,B,)+Z—L(-(aBl’,B,')+(bB,,B,))+ (4.24)
L
YR

81..’V-Aa (R) HR

Case 4: B, = 0 = Bg.
Fori=1,...,6 N—k,

Xy a
P +81,N*A8/,N—-ka(R)-R'] =

N=k
/_zla,[(aB;,B,‘)“'(bB/,B,)"B,lS/la(L)BL [3R

YR _

(C,B,) + 8, v_xa (R)
Br

(4.25)

S,Ia(L)%i—

Equations (4.23)-(4.25) all have the form
Ga =5 (4.26)

where G is an N—k by N—k matrix and b is a known N—k vector. Such systems are easily
solved, see [13] for example. The system of linear algebraic equations given by (4.26) has
some very nice properties. First, it is symmetric, that is, G, = G, for all / and j. This means
that we only need to store G, for j<i The matrix G is also banded in that G, =0 if
[i—j| = k, this property coming from the fact that each B-spline basis function B, is only non-
zero on the interval [x,,x,,,]. The matrix G is also positive-definite. This is easily seen in the
case of (1.1) subject to y(L) =0 = y(R): The statement that G is positive definite means that

for any non-zero vector a we have a'Ga > 2. If there is a vector a so that a'Ga < 0, then for
N—k—1
v= Y aB(x) we have 0 > a'Ga = f (av'B'—bvB) dx, for i=2, ..., N—k—1, which
=) L

R
simply means that 0 > f(a(v’)z—-bvz)dx. But since #<0 on (L,R) we then have
L

R
0> f a(v')Ydx which implies that v' = 0 on [L,R]) since a(x) > 0 there. Having v(L) =0

L
and v' (x) =0 on (L,R) gives v(x) =0 on [L,R) and hence a;, = - -+ =ay_, =0. Thus,
the only vector a such that a'Ga < 0 is a=0 and G is positive-definite.

Now a banded, symmetric and positive-definite matrix is an especially nice matrix to deal
with and the solution of such systems of equations as (4.26) can be achieved cheaply and accu-
rately [13]. Specifically, only the elements G, for i=1, ... ,N—kand i—k+1 < j < ineed be
stored. This requires about kK (N—k) storage locations. The system of equations (4.26) can
then be solved in about k2(N—k) operations.

5. Implementation of Galerkin’s Method

It is good to know that the Galerkin equations can be solved cheaply and accurately, once
they are formed, and that the resulting approximate solution converges to the true solution of
the problem like O(h%).

But exactly how does one set-up the Galerkin equations?

The matrix G and the right-hand-side & of (4.26) involve the integration of many functions.
One way of computing them would be to call a good automatic quadrature routine for comput-

ing integrals as accurately as possible. However, this would be an expensive over-kill of the
problem since a typical user only wants the solution of his problem accurate to somewhere

- 14 -

between 3 and 6 decimal places. Thus, it would be nice if the necessary integrals could be com-
puted only as accurately as needed in order to give a computed Galerkin solution which is accu-
rate to O (h%).

To get some idea of how this might be accomplished, consider the canonical problem of
Poisson’s equation
y'=/f on(0,1) (5.1
subject to ¥ (0) = 0 = y(1). The Galerkin matrix G in this case is simply

1
G, = [B/(x)B;(x) dx
0

and the integrands are all simply piecewise polynomials of degree 2(k—2). Thus, all we need to
do is, piecewise, integrate polynomials of degree 2(k—2) = 2k—4. By far and away the easiest
way to do this is to use Gauss-Legendre quadrature [18] on each B-spline mesh interval
[x,.x,+1]. Since an m point Gauss-Legendre quadrature rule is exact for polynomials of degree
<2m—1, we see that a k—1 point Gaussian quadrature rule is exact for polynomials of degree
£2k-=3. Thus, a k—1 point Gauss-Legendre quadrature rule, applied to each B-spline mesh
interval, will exactly compute the Galerkin matrix G for the simple equation (5.1). This raises
an interesting question:

Is a k—1 point Gauss-Legendre quadrature rule, applied over each B-spline mesh interval,
always accurate enough to compute an approximate Galerkin matrix G* and right-hand-side b
so that the computed Galerkin solution a* of

G a =0 (5.2

still gives
Nk
1y - ¥ aB(x) || = 0h"
=1

where y is the solution of (1.1)-(1.2)?

The answer to this question is, of course, yes. We shall now show why it is true, and also why
no fewer than k—1 points can be used in the quadrature rule. Thus, we shall see that precisely
a k—1 point Gauss-Legendre quadrature rule should be used to compute the integrals.

The first step is to study the sensitivity of the Galerkin solution coefficients a of (4.26) to
perturbations in G and b. Later we shall study the perturbations of G and b introduced by only
approximately computing the integrals. We know that if the right-hand-side b is perturbed by
&b then the solutions of the two equations

Ga =b and G(a +8a) =b+58b
differ by 8a = G~'6b.

Now the norm of a matrix A is simply defined in terms of the vector norm to be

All = Max .
1Z Max=000

It is an easy matter to see that
4Bl < [l4ll |18l
and
4+ Bl < ll4ll+1IB]l.

these relations being inherited from the same relationships for the vector norm. Thus,
l18a |l < |G "Il |I8b1]. Also, since ||6|] < ||G|| |la|| we can divide these two relations

.15 -

to obtain [13]

8a || i lles]
The quantity ||G|| || G|} in (5.3) is called the condition number of G and is denoted by
Cond(G). The condition number of G clearly relates the relative change in the right-hand-side
b to the relative change in the solution a. If Cond (G) is not too large, then a small change in &
will result in only a small change in a. Similarly it can be shown [13] that perturbing G by 8G
as in the equations

Ga=b and (G+8G)(a+da)=0b

gives, for sufficiently small || 8G |/,
da ISG |
lall NGl -
Thus, perturbing either G or b by a relative change of €, results in a relative change in a of at

most Cond(G)e. This tells us how sensitive the solution a of (4.26) is to changes in either the
matrix G or the right-hand-side b.

< Cond(G) (5.4)

We now study the perturbations introduced by approximate integration. By using a k—1
point Gauss-Legendre quadrature rule, we obtain all integrals accurate to O (h**~Y) and thus
the perturbations are all O (h*'*~1) Thus, we may write

a—a'
llall

and if we can show that Cond(G) doesn’t grow too fast with h—0, then (5.5) will show that
the computed Galerkin solution coefficients a” stay close to the exact Galerkin solution
coefficients.

< Cond(G)O (h?%=1) (5.5)

As a start we first consider Poisson’s equation (5.1). To estimate Cond(G) we first find
an upper bound on ||G||. This is obtained by noting that for any vector a we have

1 X 4k
1 Gal=1EafBBdl=| ¥ afBBal<llallon™
J j 0 =il €k x,
since ||B;|| = O(h™'), see Appendix 2. This gives
1G]] = 0(h™). (5.6)
We next need an upper bound on || G™'||. This is obtained by noting that for any vector a we
have
1 1
Yaa,G, = [YaaBB d=[(LaB)dx>|LaB]| (5.7)
nJj 0 .y 0 ' '

using the same argument that led to (3.16). But we know from section 2, equation (2.8), that
1Y a Bl = Cllall (5.8)

for any vector a. When this result is coupled with (5.7) we see that
Ya,a,G, > Clllall’. (5.9)
1

But, since G is positive-definite,
Ya,4a,G, =Y a(¥ G,a)| < llallo(h™ D ||Gall,
nJ !]

- 16 -

since N=0(h"'), and by combining this with (5.9) we see

l|Gall > Clo(h)||al] (5.10)
which gives

Gl < G*ok™. (5.11)
By combining (5.6) with (5.11) we obtain the very nice result that

Cond(G) = 0(h™?) (5.12)

Thus, the Galerkin equations for (5.1) are well conditioned. In fact, the Galerkin equations
condition number of O(A72), is the same order as that for centered finite differences [22].

The interested reader is encouraged to show that the same result - Cond(G) = O(h7?) -
holds for the Galerkin matrix of (1.1) subject to y(L) =0 = y(R), under the same assump-
tions as were made in section 3 to make the proof of the O(h*~') Rayleigh-Ritz convergence
rate for (1.1) easy to obtain, as an exercise. The proof follows the above outline exactly. Such
a proof is presented in Appendix 3. A general proof that Cond (G) = O(h™?) is given in [22].

Also, by (5.5), we then have
J_L‘l:i._L O(hZ(k~2)) = O(hkhkﬁt)
[lall

which shows that, for k >4,
[la—a"|| = O(n". (5.13)

This shows that the error in the computed Galerkin coefficients a” is on the order of the error
in the Galerkin solution itself. Since

Ny =yl <Hly =311+ 11p=»ll
=||Y (a’=a)B ||+ 0(h".

we may use (2.5) and (2.6) to see, for k >4,
Hy' =yl <lla=a||+0" =0, (5.14)

This establishes that, for k >4, using a k—1 point Gauss-Legendre quadrature rule to compute
the necessary integrals results in a computed approximate Galerkin solution which converges at
the correct rate. The same result holds for k=2 and 3, but a more detailed argument must be
used [23].

If k—1 quadrature points per mesh interval is sufficient to guarantee the correct rate of
convergence of the computed Galerkin solution, can fewer than k—1 points be used in the qua-
drature rule to give the same result? It is easy to see that no fewer than k—1 quadrature points
can be used by considering the sample problem (5.1) again. In that case, the Galerkin matrix is

1
@={Emm

which is to be computed by say a k—2 point Gauss-Legendre quadrature rule. Let the quadra-
ture rule have abscissae &,, and weights w,,, m=1, ..., k—2. Then for any function g(x) on
{—1, +1] we have

+ k=2

feax = T w,g€)+0([g2*2)
-1 =1
Now consider the simplest mesh possible, that is, just one mesh interval,
x;= - =x,=0, x4y = -+ =x3 =1. In this case, the approximate Galerkin matrix

217 -

is, ignoring a factor of 2,

A-2
G, = zw,,,B,’(x,,,)B,'(x,,,), (5.15)
m=1
where x,, = (1+£,) /2. We shall show that this approximate Galerkin matrix is singular, and
hence that a less than k—1 point quadrature rule cannot in general be sufficient to compute an
accurate Galerkin matrix. To show that G’ is singular, it is enough to ext}ibit a non-zero vector

a =1(0,a, ...,ay__1,.0) such that G’'a = 0. Now we know that G, = f B/B| dx and thus
0

1
Y G,a, = [B(Y a,B) dx (5.16)
i 0

/

We can exhibit the appropriate vector a by constructing a non-zero function v = 3" a,B, which

is a polynomial of degree <k—1, whose first derivative vanishes at the x,, for m=1, . . ., k-2,
and for which v(0) =0 = v(1). A polynomial of degree k—2 which vanishes at the quadrature
points is given by

z(x) = (x—xp) - (x=x_9)

The polynomial of degree k—1 given by

v(x) = [2(n) dn (5.17)

0

!
has v’ (x,,) = z{(x,) =0 for m=1, ..., k=2, v(0)=0 and v(l)=fz(1;) dn = 0 by virtue of the
0

fact that the x,, are the Gaussian quadrature points for the interval [0, 1]. The polynomial v is
not zero since the coefficient of x*~!is 1/(k—1). Thus, the non-zero polynomial v given by
(5.17) provides the necessary non-zero coefficient vector a for which G'a = 0 and G’ is in fact
singular. These results may be summed up as follows:

Precisely k~1 Gauss-Legendre quadrature points should be used per mesh interval to compute
the integrals. The use of more points would increase the cost, but not the convergence rate,
while the use of fewer quadrature points could resuit in a singular matrix.

We now have a complete formulation of Galerkin’s method - the equations and a method
for forming the integrals which make up the equations. The most obvious way to form the
Galerkin equations is then basically to compute G, for j </ by doing each integral, piece by
piece, in its turn, as in the code

For i=2, ... N—-k-1

{
For j=Max(i—k+1,1), ..., i

{
Xtk

Compute f (aB/B; - bB B,)dx
xl
using k—1 Gaussian quadrature points on each mesh interval.
}
J

This then requires roughly (N—k)g(kz-l) evaluations of a(x) and 6(x), and as many multi-

plications, to compute all integrals. However, this is exceedingly wasteful in that both a(x)
and b(x) are really only evaluated at the quadrature points of each interval, or about

- 18 -

(N—k)(k—1) points. This could of course be remedied by evaluating and storing the necessary
a(x) and b(x) values just before entering the outer loop. However, this would require about
2(N—k)(k—1) storage locations, which is more than that used by the Galerkin matrix itself,
which uses precisely k (N—k) locations. Another way would be to evaluate and store the a and
b values and all the non-zero B; and B, at all the Gaussian quadrature points of all the intervals
(x,,%,+1), - . (X, 4x_1.x,4x) at the top of the outer loop. This would require 2k (k—1) storage
locations for storing the a and b values, but requires 2k2(k—1) words to store all the non-zero
B; and B; values.

By re-ordering the loops to do the operations interval by interval we can construct the
equations in the same number of operations and yet use less storage. On any interval (x,,x,,,)

the only B, which are non-zero there are for j=/—k+1, .. ., I. Thus, we can form the Galer-
kin equations by
For I=1, . . ., N—k

Evaluate and store a,6 and all non-zero B, and B/
at the k—1 quadrature points of (x;,x;,).
For i=l—k+1, ..., !

{
For j=I—-k+1, ..., i

{
Vi+1
Compute f (aB/B, - bB B,)dx
\'I
using a k—1 point Gaussian quadrature rule.

J
}

This uses only
A w-nv-i) (5.18)

operations, (N—k)(k—1) evaluations of a and b, and 2(k—1)+2(k—1)k = 2(k*-1) scratch
storage locations.

The above outline for evaluating the Galerkin matrix, as well as the right-hand-side 4, can
be implemented in less than 35 FORTRAN statements, with the treatment of the boundary
conditions requiring less than 35 FORTRAN statements as well. This is roughly twice as much
FORTRAN code as the implementation of a centered finite difference scheme for solving
(1.1)-(1.2). Thus, the benefits of Galerkin's method - higher order rate of convergence,
greater accuracy, the ability to use a non-uniform mesh - come at a price which is not too high
for the implementor of such techniques.

Galerkin’s method, using B-splines, has been implemented for solving the boundary value

problem for systems of linear differential equations in a single variable. This package is in use
as the core of the time-varying partial differential equation solver POST [20].

6. Error Estimation

Now that we have a technique available for finding an approximate solution of (1.1)-(1.2)
accurate to O(4%), and it is thus known to converge as #—0 to the true solution of the prob-
lem, a very important practical question arises:

- 19 -

For a given mesh m, how accurate is the computed Galerkin solution y based upon that mesh?

This is a tidy paraphrase of the eternal question asked by all users of computer software (and,
sometimes, hardware):

1 just spent X Kilobucks getting this basket of numbers, how good are they?

There is, in general, no way to guarantee, in a finite amount of computer time and memory
(Dollars), that a given Galerkin solution is accurate to a certain amount. No matter how much
treasure is expended, the coefficients a, b and c of the differential equation can only be sampled
at a finite number of points, yet the solution y of (1.1)-(1.2) is very strongly dependent upon
the value of these coefficients everywhere. Thus, no matter how carefully the coefficients are
sampled, they may be sufficiently "kinky" between the sampled points that the solution y is radi-
cally different from J.

Even though the above question is, in general, unanswerable in a definitive sense, users
will continue to ask it and many will demand some sort of statement about the accuracy of the
computed approximate solutions. This section makes a "reasonable” attempt to respond to this
unanswerable question.

We want to estimate the error in a given computed Galerkin solution y to (1.1)-(1.2) over

a mesh m. We know that the error ||y —7|| = O(#*), which simply means that there is a con-
stant C so that as h—0 we have
lly =21l < Ch* (6.1)

If we can estimate the constant C, then by (6.1) we will have an estimate for ||y —§||. The
actual, observed behavior of the error as h—0 is

lly =9l = Ch*. (6.2)

This is an asymptotic statement about the observed behavior of the error as the mesh spacing
approaches zero, but we shall assume that it holds for all meshes. Let 7, and m, be two
meshes, with |7,| < |m,|, and let y, be the computed Galerkin approximate solution over the
mesh =, for i=1,2. If we set o = |m,|/|m;| < 1, then we obtain

[y =yall = Clmal* = o*lly =»ill (6.3)

and thus
Hy =l <y =yall +1ya=yill=a*lly =il + 11y =nill.
We also have from the triangle inequality,
ly =yl = lly2=yill =1y =»all = ly2=nill =a*lly =il
which when combined with the previous inequality gives
Hy=yill=a*lly =yl < lly=nill < ly2=nll+atlly =pill (6.4)
This relation gives

“)’2‘)’1” ”)’2“)’1“
————— < - < e
T+or <y =will € e
Since typically o* << 1 we see from (6.5) that a very good estimate (upper bound) for

[ly =2l is given by

(6.5)

Hy2=ill
1-co*
The estimate given by (6.6) is obviously computable since both y, and y; are known B-splines.

The estimate given by (6.6) is very accurate and reliable, as we shall see in section 7. It is
accurate, asymptotically, because (6.2) does hold, in practice, very well. It is reliable because

lly =will = (6.6)

-20 -

when (6.2) does not hold, the difference ||y, —y|| is quite likely to be large, giving a large
estimate of ||y —y,|| by (6.6).

The value of ||y, —y,|| need not be computed exactly, a good estimate for it will do just
as well. Let m be the mesh which is the union of all the points in both 7| and 7,. Then on
each interval of the mesh =, the difference y,(x) —y,(x) is just a polynomial of degree k—1.
So estimating ||y, — || can be reduced to the problem of estimating the maximum absolute
value of a polynomial over an interval.

The Bernstein Inequality [1] may be used to estimate the norm of a polynomial over an
interval. Specifically, the Bernstein Inequality states that for any polynomial P,(x) of degree n
on the interval [—1, +1], the trigonometric polynomial 7,(9) = P,(cos(9)) on [—m, +m] obeys

T <nllT,]]

If we sample T,(8) at m equally spaced points 8, on [0, 7], then for any 6€l0, 7] we see that,
by the Mean Value Theorem,

|T,(®-T,06)| < [|T,|| [6-96,].
Thus,

=1, ..., m"l)

HT,Il <2 Max |T,(0)]

b=l
Consequently, if we search the interval [-1,+1] at x, = cos(8,), fori =1, ..., m, we obtain
/lV!ax [P, (x)] < ||P,|] €2 /ll/!ax |P,(x,)|

and the norm of P, may be estimated to within a factor of 2 by using a search pattern of n#+1
points. Such a search, over each interval of the mesh w, is sufficient for our needs, and results
in the computation of the error estimates to within a factor of 2.

The very first user complaint about using (6.6) to estimate the error in the Galerkin solu-
tion is that the Galerkin equations must be formed and solved for two different meshes in
order to estimate the error in one of them. Just how big an overhead does (6.6) require above
just solving for y,, the numerical solution which will be used because it is the more accurate of
y1 and y,? Well, typically k >4 and o = |m,|/|m| = 2/3, and thus ¢ = 1/5. Since the cost
of obtaining a Galerkin solution is proportional (5.18) to the number of points in the mesh, the
ratio of the cost of computing both y, and y, to just computing y; is 5/3. This, at first glance,
appears to be a rather large price to pay for error estimates. However, the alternative is the
relatively cheap computation of a pile of numbers of absolutely unknown accuracy. The situa-
tion may be summed up as:

We can get the (potentially) wrong answer cheaply, the correct answer costs more to obtain.

Another error estimation scheme that can be used is obtained from (6.6) by noting that
[ly =y3l| = o*|ly —»:|| and hence, from (6.6),
ANy2=nill

1 -o*

This relation can be used to estimate the error in the most accurate approximate solution we
have computed, y,, rather than the least accurate, y;. This seems like a good idea, to use the
best information available, and in the limit as h—0, it is a good idea. However, (6.7) suffers

from a serious defect. If the solution is not approximated well by either y, or y,, and we have,
for example, o = 2/3 and k=6, then o* = 107! and we will estimate that

Hy—»nll =¢o (6.7)

- 21 -

ly =yall = lya=nill/10

Thus, although both y, and y, may only be good to 107!, (6.7) will estimate ||y —y,|| = 1072
The problem of course is that the estimate (6.7) may be small (for * << 1) when ||y, — ||
and ||y —y,|| are quite large. In section 7 we shall see that (6.7) must indeed be used with
some care, but that (6.6) is extremely reliable. In any case, no matter which error estimate is
believed, the more accurate y, values are used as the solution.

7. Numerical Examples

This section applies Galerkin’s method, using B-splines, to two problems. The first exam-
ple serves several purposes. First, it consists of 2 differential equations, each holding on one
side of an "interface". Such interface problems occur frequently in practice and it is useful to
see how Galerkin’s method handles them. Second, it is a problem to which the exact answer is
known and we can examine the convergence rate of Galerkin’s method, and the error estima-
tion schemes of section 6, for this simple problem. The last purpose served by the first exam-
ple is to exhibit a "superconvergence” property [10,11,24] of Galerkin’s method. We can then
note that the error estimation schemes of section 6 are robust enough to detect and exhibit this
praperty as well. The second example is cooked up to "break"” the error estimation schemes of
section 6. The extent to which those schemes break down is discussed and compared, showing
that the second error estimation scheme of section 6 is in fact rather unreliable, while the first
scheme is quite reliable.

The previous sections have described Galerkin’s method for a rather clean, textbook
problem, (1.1)-(1.2). Problems in real life are often not that simple. The first sample problem
illustrates a common "unclean” problem which can be laundered into the form of (1.1)-(1.2).
Consider the problem

yi'=0 on (=1,0)
(7.1)

¥ e,\'/Z

yi=5 4= =0 on(0+D

with y,(=1) = 0 and y,(+1) = Ve = 2.7..., subject to interface conditions
»1(0) = y,(0) (7.2a)
y1(0) =2y;(0). (7.2b)

The solution of this problem is
nix) =x+1 on (~1,0)
(7.3)
yi(x) = e*'2 on (0,+1).

Interface conditions (7.2) do not fit into the problem formulation (1.1)-(1.2), which only allows
conditions to be imposed on the solution of the differential equation at the end points of the
interval.

To see how Galerkin’s method can be used to solve (7.1)-(7.2) requires a little analysis,
and handwaving. It is instructive to see how such interface problems arise in practice. In elec-
trostatics problems [17] where there are two materials of different dielectric constants in con-
tact, the dielectric constant is in fact continuous across the point of contact. However, the size
of the transition region where the dielectric constant changes from one constant value to the
other is exceedingly small. Let us assume that a (x) represents this essentially piecewise con-
stant dielectric constant and that the space-charge present is given by f(x). Then Poisson’s
equation for the electrostatic potential y is

-22.-

(a(x)y’) =f on (-1,41) (7.4)

where the interval (-1, +1) has been chosen for no particular reason. Further, let us assume

that a (x) looks like
’ a(x)

— X
+3

where a; and ag represent the5 two dielectric constants and 28 is the (small) width of the transi-
+

tion region. Then by taking f of (7.4) we have
-8

+5
ay |2 = fax = 0(s)
-8

which gives
agyg (0) —a,y; (0) = O(8). (7.5)

The physical argument then says that the potential y is insensitive to the choice of & in (7.4), so
long as & is small, and thus that we might as well take 8 = 0, and literally make a(x) a step-
function. But 8 = 0 gives, from (7.5),

aryr(0) = a,y; (0), (7.6)

which has precisely the same form as (7.2b). Thus, such interface conditions are a consequence,
in the limit as 8—0, of solving the differential equation, rather than a condition placed upon the
solution. Specifically, it shows that a jump discontinuity in the coefficient, a, of y” implies an
interface condition of the same form as (7.2b). The trick is to re-write (7.1) so that its
coefficient a of y” obeys a, = 1 and ag = 2 at its jump discontinuity. It is also good to note
that the above argument which led to (7.6) is independent of (did not use) the boundary con-
ditions on y at x = —1 and +1. ’

Now suppose that Galerkin’s method was applied, blindly, to an equation like (7.4), with
a knot placed at 0. What would happen? Well, Galerkin’s method will sample a(x) at k—1
Gaussian quadrature points strictly inside the mesh intervals on either side of 0. From that

-23.

information Galerkin’s method cannot tell whether a(x) is continuous or discontinuous at 0.
In fact, for a given mesh, the Galerkin solution will be independent of what a(x) does between
the quadrature points immediately to the left and right of 0. Thus, we might as well assume
that a(x) is continuous, but changing from a; to az over an exceedingly small interval. The
argument which led to (7.6) then says that we should obtain the Galerkin approximation to the
solution of (7.4) with a,y, (0) = agy; (0). This is precisely what we want of course.

However, we can just as well assume that a (x) changes smoothly, not abruptly, from a,
to ag between the Gaussian quadrature points on either side of the origin. In this case, we are
trying to approximate another, slightly different, solution.

How does Galerkin’s method know which solution to approximate ?

The main difference between the two solutions, for a(x) smooth and discontinuous, is of
course in the continuity of y'at 0, the former being smooth and the latter being discontinuous.
Remember that the continuity of a B-spline at a knot x, is determined by the multiplicity m, of
that knot in the mesh. Specifically, for any B-spline u, we have that u'%(x), .. ., w7 ()
are all continuous at x,, but all higher derivatives of ¥ may be discontinuous at x,. Recall that
this forced, in general, the multiplicity of the first and last mesh points to be k and allowed
m, =1 at all other knots of u where u is smooth. Here however we have a point where the
solution is not smooth at a mesh point. Thus,

It is the multiplicity of the knot at O which determines the type of solution we are trying to
approximate.

Instead of choosing the multiplicity of 0 to be 1, we take it to be k—1, giving only 'Y continu-
ous. With this choice for the multiplicity of 0 in the mesh, we can expect to find the solution y
of (7.4) accurate to O (h%).

We can now re-formulate (7.1)-(7.2) as
y=0 on(-1,0)

(;.;)
i 6’/2)

with y,(=1) =0, y,(+1) = Ve and the knot at 0 of multiplicity k—1 in the B-spline mesh.
This gives the ratio of the coefficients of y” on the left and right sides of 0 as 2. The above
handwaving then indicates that we should have y; (0) = 2y, (0) which is precisely (7.2b). Note
that (7.2a) is guaranteed by the choice of k—1 for the multiplicity of 0 in the mesh.

Figures 1,2 and 3 show the true error and the two error estimates of section 6 for
k =2, 4 and 6 of the Galerkin solution of (7.7}, or (7.1)-(7.2), using N equally spaced mesh
points on (—1,+41). Thus, # =2/(N-1) and we should have the error =C / (N-1)* for some
constant C. As the plots show, both error estimation schemes of section 6 give excellent
results for this example. The rate of convergence for y, is as expected - O(h*) - since the
slope of In (error in y,) versus In (N—1) is —k.

However, the error in y, is too good. In fact, the error for y; when k = 6 is at the round-
ing error level (about 107" for the Honeywell HIS 6070) for all N! For k = 2 the error in
v, is clearly O(h?) which is no surprise. For k = 4, the error in y, is clearly O (h®). This is an
example of a "superconvergence" result. It is known [10,11,24] that the error at the mesh points
x, of the B-spline Galerkin solution is O (h**~"). This means for our problem that 5,(0), 0
being a mesh point, is accurate to O (h2*~1). We also know that §,(=1) = y,(=1). The error
in $; at 0 and -1 is thus O(h?*~V). But (7.7a) means that y, should be a straight line, and
the Galerkin solution has this property as well. Thus y,~p,, being a straight line which is
O (h*'* V) at its end points, is simply O (h**~1)_ This result certainly agrees with the numeri-
cal evidence presented in figures 1-3. This shows that the error estimation schemes of section

224 -

6 can detect convergence rates which are different from the expected O (4%).

The above example exhibits all kinds of nice behavior - Galerkin's method works for such
interface problems, the rate of convergence is as expected, or better, and it shows that the error
estimation schemes of section 6 work properly.

While it is nice to see that a numerical technique works as advertised, it is much more
interesting, fun and instructive to find out where the technique breaks down. The second
example is designed to break the error estimation schemes of section 6. This is easily accom-
plished by trying to approximate a spiky function like y = sin(x)™, for some large m, on [0,].
The equation

y" = (sin (x)™+ 1)y +sin(x)*"+(m?+Dsin(x)" = m(m—1)sin(x)" -2 = 0 (7.8)

on (0, 7) subject to y(0) =0 = y(x), has the solution y =sin(x)”. Note that for large m,
(7.8) is nearly the equation y"—y =0, for all x not near m/2, which has the solution y =0,
the wrong answer.

Clearly, by choosing m sufficiently large we can fool any technique for approximately solv-
ing (7.8), and/or estimating the error in the solution, which does not use the point 7 /2 in its
computations. Using this test equation it is easy to see that the second error estimation scheme
of section 6 is quite unreliable. By choosing m = 10, we obtain the results shown in figures 4-
6. As those plots show, the second error estimation scheme sometimes grossly underestimates
the error. The amount of underestimation goes up with &, as the handwaving in section 6 said
it should, and the error for k = 6 is underestimated by two orders of magnitude! On the other
hand, the worst underestimate by the first error estimation scheme of section 6 was, by less
than a factor of 3, for k = 6.

Acknowledgments

James McKenna and James L. Blue have provided ample constructive criticism and have
participated in a number of enlightening catharses. Blue is also responsible for the observation
that interface conditions, discussed in section 7, are a natural consequence of the differential
equations, rather than conditions to be placed upon their solution.

(1]
(2]

(3]

[4)

(]

(6]
(7]
(8]

(9]

(10]

(11]
[12]
(13
(14]

[15]
(16]

[17]
(18]
[19]

(20]

Bibliography

E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.

P. G. Ciarlet, M.H. Schultz and R.S. Varga, "Numerical Methods of High-Order Accuracy
for Nonlinear Boundary Value Problems I. One Dimensional Problem.", Numer. Math., 9,
394-430(1967).

P. G. Ciarlet, M.H. Schultz and R.S. Varga, "Numerical Methods of High-Order Accuracy
for Nonlinear Boundary Value Problems II. Nonlinear Boundary Conditions", Numer.
Math., 11, 331-345(1968).

P.G. Ciarlet, M.H. Schultz and R.S. Varga, "Numerical Methods of Higher-Order Accu-
racy for Nonlinear Boundary Value Problems IIl. Eigenvalue Problems", Numer. Math.,
12, 120-133(1968).

C. deBoor, "Best Approximation Properties of Spline Functions of Odd Degree", J. Math.
and Mech., 12, 747-749(1963).

C. de Boor, "On Uniform Approximation by Splines”, J. Approx. Th., 1, 219-235(1968).
C. de Boor, "On Calculating with B-splines”, J. Approx. Th., 6, 50-62(1972).

R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, New
York, 1966.

H.B. Curry and 1.J. Schoenberg, "On Polya Frequency Functions IV: The Fundamental
Spline Functions and their Limits", J. of Anal. and Math., 17, 71-107(1966).

J. Douglas, T. DuPont and M.F. Wheeler, "An L. Estimate and a Superconvergence
Result for A Galerkin Method For Elliptic Equations Based on Tensor Products of Piece-
wise Polynomials”, RAIRO, 8, 66-66(1974).

T. DuPont, "A Unified Theory of Superconvergence for Galerkin Methods for Two-Point
Boundary Problems", SIAM J. Numer. Anal., 13, 362-368(1976).

G. Fix, "Higher-Order Rayleigh-Ritz Approximations", J. Math. and Mech., 18, 645-
657(1969).

G. Forsythe and C. Moler, Computer Solution of Linear Algebraic Systems, Prentice-
Hall, 1967.

G. Forsythe and W. Wasow, Finite Difference Methods for Partial Differential Equa-
tions , Wiley, New York, 1959.

M.J. Marsden, "On Uniform Spline Approximation”, J. Approx. Th., 6, 247-253(1972).

J. McKenna and N.L. Schryer, "Aralysis of Field-Aided Charge-Coupled Device
Transfer", BSTJ, 54, 667-685(1975).

P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Mc Graw-Hill, New
York, 1953.

R.A. Sack and A.F Donovan, "An Algorithm for Gaussian Quadrature given Modified
Moments", Numer. Math., 18, 465-478(1972).

N.L. Schryer and L.R. Walker, "The Motion of 180° Domain Walls in Uniform dc Mag-
netic Fields", J. Appl. Physics, 45, No. 12, 5406-5421(1974).

N.L. Schryer, "Numerical Solution of Time-Varying Partial Differential Equations in One
Space Variable", Bell Laboratories Computing Science Technical Report #53, 1976.

[21] M.H. Schultz, "The Galerkin Method for Non-Self-Adjoint Differential Equations", J.
Math. Anal. and Appl., 28, 647-651(1969).

[22] M.H. Schultz, "The Condition of a Class of Rayleigh-Ritz-Galerkin Matrices", Bull. AMS,
76, 840-844(1970).

(23] G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall, New
York, 1973.

[24] M.F. Wheeler, "L.. Estimates of Optimal Orders for Galerkin Methods for One-
Dimensional Second Order Parabolic and Hyperbolic Equations", SIAM J. Num. Analy.,
10, 908-913(1973).

[25] J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, New York, 1963.

Appendix 1

The Convergence of Rayleigh-Ritz for (3.18).

The Rayleigh-Ritz solution, 7, of (3.18) is the minimizer of (3.19) over
< By ..., By_,_, >. Thus, as before, J is the solution of
I
J (a5'B;— 3B, ~cB) dx =0 (AL.1)
0

while the solution of (3.18) certainly satisfies

1
f (ay'B/—tyB ~cB) dx =0 (A1.2)
0

[
by taking f B, dx of (3.18) and using integration by parts. Subtracting (Al.1) from (A1.2) we
0

see that
1
[(ay=9)B-b(-$B)ax =0 (AL3)
0
Thus, ¥ minimizes the functional
1
FG) = [(=52 =b(y —5)?) dx (A1.4)
0
over < B,, ..., By_i_; >. Since ||a|| and ||| are assumed to be finite, we can show, pre-
cisely as before, that the minimum of this functional is O(A*~'), and thus
F() = O(h* H2 (A1.5)

Now all we need to note is that, since & < 0 on (0,1),
1
F(Q) 2 fa(y’—-f/’)zdx.
0

This in turn, since a 2 o on (0, 1), gives

FG) = o) () —p)ldx (A1.6)

o — W

Thus, by (3.16), (A1.5) and (A1.6),
1
|U-NI<(%F@U2=0M“U

and we are done.

Appendix 2

To show ||B/(x)|| = O(h7Y).

We have (6], when all m, = 1for2 </ < N—k-1,
k+1 (x—x, B)A—l
B(x) = (x40 —x) X7 e
= T (xt+/—l_xt+/vl) ™ (x1+/—l_xr+l—|)
=1 =741

and thus, for kK 2 3,
k+1 (x-xlﬂ_l)i*l

B,’(X) = (k_l)(x/+k _xl) Z J-1 k+1

i=1
11: (XM-/—I —XH'-IAI) ?TT (xl+1—l _xl+/—|)

where £, is defined to be & for £ > 0 and 0 for ¢ < 0. From this we see that, using the mesh
restriction (3.10),
k+1 (x_ /+/ l)k—z

[1B/(x)|| € (k=1)khY —
r=1 17(/ 1) o (l—j)(h/y.)"

kel (XI+/(_X1+[l)+
< k(k=1)h
(2 tG=D!k+1=) 1/ w)*

k+1 (k+l_j)k -2

< k(k=Du ™!
;/,1—9-—4—)-44(44—])‘
=0

and we are done.

Appendix 3

To show Cond (G) = O(h™?).

We have
R
G, = | (aBB;—bBB,) dx (A3.1)
L
and for any vector a
R
IS Ga,l =1%o f (aBB;—bBB,) dx | (A3.2)
! i L
R
=1 Y af (aB/B;-bBB,)dx|
IS L

But, since ||a|| and ||6|| are both finite, we have exactly as before,
R
f aBB dx = 0(h™)
L

and
R
f 688, ax =0,
L

and we have, using (A3.2),
G|l = o). (A3.3)

To obtain an upper bound on ||G~!|| we note that, as before,

R
Ea/a,G,,«=f Y a,a;(aB'B/~bB B;) dx
i L .y

e

a(Y a,B)—b(Y aB)?|dx

> | a(Y a,B)%dx

> 22T el

using the fact that & < 0. But we also know from (2.8) that
1Y a8l > Cllall

for any vector a. This coupled with the above inequality gives,
Yaa,G, > Clollal|/(R-L).
L

From this we see that, exactly as before,

A3-2

l|Gall llallo(h™) > Clollall?/(R-L)

and
> -2)
l1Gall > G220 |lall
Thus,
el < c22=Low
b v

and using (A3.3)
Cond(G) = O(h™?)

and we are done.

ERROR

1072

10-4

1073

1076

1077

INTERFACE FOR K=2

o= TRUE ERROR

X =ERROR ESTIMATE NO. 1
®=ERROR ESTIMATE NO. 2

L LI (it

|

1 1

® XX

N-1

FIGURE 1

ERROR

10-4

10°95

10°7

10-9

10-10

INTERFACE FOR K=4

. —

e=TRUE ERROR

X=ERROR ESTIMATE NO. 1
®=ERROR ESTIMATE NO. 2

ERROR IN Y, —

X

SLOPE=4 —X

®,

X

.__ERROR
IN Y,

SLOPE=5.75

FIGURE 2

ERROR

10-8

10-°

10-10

10-“

1014

INTERFACE FOR K=6

e=TRUE ERROR

X=ERROR ESTIMATE NO. 1
®= ERROR ESTIMATE NO. 2

ERROR IN Yo—
®

SLOPE=6—»

N RN

®

l

N-1
FIGURE 3

ERROR

10!

100

10-!

SIN'O(X) FOR K=2

o= TRUE ERROR

X=ERROR ESTIMATE NO. 1
®= ERROR ESTIMATE NO. 2

| O

N-1
FIGURE 4

®/ FT—— SLOPE=2

ERROR

1071

10-2

10°5

SIN'O(X) FOR K=4

e=TRUE ERROR

X=ERROR ESTIMATE NO.1
®=ERROR ESTIMATE NO. 2

xe

<——SLOPE=4.5

L 11 | 411 1 L

N-1
FIGURE 5

10!

100

1071

10-4

10°5

SIN'O(X) FOR K=6

e=TRUE ERROR

X =ERROR ESTIMATE NO. 1
®=ERROR ESTIMATE NO. 2

X
.

X
SLOPE=6—__ _[®
®

>

I O

®

11|

[

N-1{
FIGURE 6

