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ABSTRACT

An algorithm is presentedfor the numericalsolution of time-varyingpar-
tial differential equations in one space dimension. The techniqueused is a
combinationof

Spatial discretizationby Galerkin’s method,using B-splines,and

Solution in time by a variable order, variable time-stepextrapolationpro-
cedure.

The algorithm is capableof dealing with coupled systemsof partial differential
equations,those dependingon both time and space,and ordinary differential
equations,those dependingonly on time. Also, non-local conditions may be
imposedon the solution, such as making it periodic in space,or specifying its
spatial integral as a knownfunction of time.

A preliminary implementationof the algorithm in portable FORTRAN,
called POST ( Partial andOrdinary differential equationsin Spaceand Time ),
is described. The packageis especiallyeasyto use sinceonly the spatial mesh,
and the accuracy desiredin the solution of the equationsin time, needto be
specified. The time evolution is then automaticallycarriedout to achievethe
desired accuracyat the least possible cost. A user’s guide to POST is given
along with severalexamples.
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1. Introduction.
Many applications require the solution of time-varying partial differential equations

(PDE’s) in one spacevariable. Typically theseequationsare sufficiently complex that their
solution mustbe carriedout numerically. In the past, this effort has required the collaboration
of the person(s)who formulatedthe PDE problemwith numericalanalystsandmathematicians.
This interaction,while fun and interesting,is exceedinglycostly.

This paperdescribesthe preliminary releaseof a packageof portable FORTRAN software,
called POST ( Partial andOrdinary differential equationsin Spaceand Time ), for solving sys-
temsof PDE’s in one spatial variable and time. A subsequentpaperwill describethe com-
pletedpackage,which will hopefully benefit from user commentsbasedon experiencewith the
current package. Using POST, the’ formulator of a PDE may easily and personallysolve the
PDE numerically. POST allows for terms of the form u, u~, u,, u ~ u ~, u,~ in the PDE’s,
and u, u~, u~, u~, in the boundaryconditions ( BC’s ), where u is a vector of PDE variables,
andu~ denotesOu/ax, etc. The packagealso allows for ordinary differential equations(ODE’s)
in time to be coupled to the PDE’s and the boundaryconditions. Furthermore,it is possible
for non-local statementsto be made about the solution, such as forcing it to be periodic or
making its integral, say f u(t,x)dx, be a known function of time.

Section 2 describesthe class of PDE problemstreated. Section 3 discussesbriefly the
numericalmethodused to solve the PDE’s ( Galerkin’s method in space,usingB-splines,anda
variableorder,variable time-stepextrapolatedbackwarddifferenceprocedurein time ). Section
4 discussesseveral simple applicationsof POST. Section 5 discussesthe mechanismwhich
allows for non-local statementsto be madeabout the solution, and alsoallows for the coupling
of ODE’s in time. Section 6 discussesseveral exampleswhere POST is used to solve PDE-
ODE combinationsand handle periodic boundaryconditions.

Section 7 gives a list of error statesand problemswhich may arisewhen using POST, and
what the commoncausesof such difficulties are. Sections8 and 9 discussthe algorithm used
by POST in considerabledetail. Appendix I gives a brief tutorial on B-splines. Appendix 2
gives a brief tutorial on extrapolation. Appendix 3 discussesimprovementswhich could be
made,andthosewhich will be made, in POST.

Severalother FORTRAN software packageshave recently becomeavailable for solving
PDE’s in one spatial variable [45,461. All of the thesepackagesassumethat the PDE has the
form

= f( t, x, u, u~, (Du~)~ ),

whereD(t, x,u) is a diffusion coefficient, with boundaryconditionsof the form

u = a()

or

a¼,u)±#(,,u)u~=

While this type of formulation covers a very wide range of physically interestingproblems,it
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doesnot cover problemswith u~, or u,~, terms [511,nor does it deal with non-localstatements
such as periodic boundaryconditions [311. Finally, the aboveformulation doesnot allow for
the coupling of ODE’s in time with the PDE’s in spaceand time [1,39,561.

2. Statementof the PDE-BC Problem.
The generalPDE-BC form that can be solved with the approachused in POSTis given by

the following equations,whereu is a vector of PDEvariablesof length n~. The full PDE-BC-
ODE form is describedin section5. The PDE’s are assumedto be in semi-linear,divergence-
form

wherea and f are vector-valuedfunctionsof their arguments,for L ( x ( R. It is required
that the length of a and f be equal to n1~~ the numberof PDE variables. The boundarycondi-
tions are assumedto have the form

bL(t, u(t,L), u~(t,L), u,(t,L), u~,(,,L)) = 0

(2.2)

bR(t, u(t,R), u~(t,R), u,(t,R), u~,(,,R)) = 0,

where bL and hR are vector valued functions, of length n11~ of their arguments. Any com-
ponentof the BC vectorsbL or bR which is identically zerois treatedas an inactiveBC. If each
of the PDE’s is secondorder in space,then eachof the BC’s will have to be active. If any of
the PDE’s are of order less than 2 in space,some of the BC’s must accordingly be inactive.
Initial conditions(IC’s) u(O,x) must be supplied,but neednot satisfy the BC’s (2.2).

A classicalexampleof the aboveform ( with n~=l ) is the heatequation[351

ii, = u~ on [0,11

subject to boundaryconditions

u(t,0) =0 and u(t,1) = I

with initial conditions

u(0,x) — 0.

Note that theseinitial conditionsdo not satisfy the BC’s. For this equationwe have

a—ut and f—u,

with

= u(t,0) and bR — u(t,1)—I

Note that the form of (2.1)-(2.2) encompassesboth parabolic (elliptic) and hyperbolic
problems. It alsoencompassesPDE’s which haveno solution, suchas

uQ + u,
2 — —1

over the real field.

3. General Method of Solution.
Let the solution uU,x), for a given instant in time, be approximatedby a B-spline [2,31

of order k on a meshX(1) ( ( X(NX), see Appendix 1. That is, eachcomponentof the
solution will be approximatedby a piecewisepolynomial function of degreeless than k, with
k—2 continuous derivatives, where k ~ 2 is any integer the user desires. If we set
h — maxlX(,+1) — X(i)I, then the error maxi u,(,,x) — i~,(t,x) I is O(hk) [31for some B-

x
spline ii,. Since k may be takento be any integer ~2, this givesa very powerful techniquefor
approximating the solution u(,,x) in space. We can use the Rayleigh-Ritz-Galerkin(R-R-G)
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method [501to essentiallyfind the projection of the solution of the P1)13 onto the spaceof 13-
splines we have selected. This reducesthe PI)F’s in space and time to 01)13’s in time
[27,39,501for the coefficients U1, (A in the expansion

u1(t,x) = ~U~,(r)B1(x) (3.1)

where the B,(x) are the 13-splinebasisfunctions.
Thus,after the spatial discretization,only ODE’s in time remain to be solved. Since these

ODE’s are known to be, in general, “stiff” [13,141,an implicit differencing schememust be
used to solve them. This virtually requires that the partial derivativesof the a andfin (2.1),
and the bL and bR in (2.2), with respect to their argumentsbe known, either analytically or
numerically.

The next step in the solution processis the solution of these time-varying ODE’s. Ilere
we assumethat some basic one-stepODE solver is available. For example,a backwards-Euler
or Crank-Nicholsonscheme[351,or an exponentially-fittedtechnique[281.or evenan explicit
methodsuchas Gragg’s modified mid-point rule [27,281,could be used.

All of the above techniques,and many others,have the property that for a given time-
step8 they producean approximatesolution which is accurateto O(8~), where typically y is I
or 2. Moreover, if the equationsare solved using time-stepsof 8 and8/2, the resultsof these
two computationscan be combinedusing extrapolation to the limit [5,271to obtain a result
which is accurateto O(8

2~). This processcan be repeatedindefinitely, with the result that a
basicprocessof accuracy 8~’ can be used to generatea sequenceof processesof accuracyO(8V),

A step-sizeand order mQnitor is available [40,411for carrying out this extrapolationpro-
cessand automaticaIO~’ decidingwhat time-step8 and order Py should be used,when given the
accuracydesiredin the solution. Thus, the user needonly specify how accurately the solution
in time is to be computed,and the time integration then proceedsautomatically,with no need
for the user to worry aboutchoosing8, or whetherthe numericalsolution is accurateenough.

The algorithm for solving suchPDE’s then consistsof 3 steps:

1) Discretizethe equationsin spaceusingR-R-G with B-splines.
2) Producea one-stepmethod for solving the resultingODE’s.
3) Feedthat one-stepprocessto the extrapolationstep-sizeand order monitor.

4. Software for the PDE-BC Problem.

The algorithm outlined in section 3 and describedin detail in sections8 and 9, has been
implementedin EFL [291,a Ratfor-[321-like FORTRAN preprocessorlanguageof considerable
eleganceand power. This section is a brief user’s manualfor this softwarepackagecalled POST
(Partial andOrdinary differential equationsin SpaceandTime). BecausePOST is implemented
in EFL, a FORTRAN preprocessor,programswritten in FORTRAN, Ratfor, EFL or other
FORTRAN preprocessinglanguagesmay be usedto drive andcommunicatewith POST.

It should be noted that the current, preliminary implementation is still evolving (see
Appendix 3), and user’s complaints, commentsand suggestionsare encouragedbefore the
packageis firmed-up (petrified) for release.

The outer layerof the POST packageis called Postsand is invokedby

Cal I Posts(U,nu,k,X,nx, * *

star t , t stop, d t

AF,B, *

err par
Handle)

where a * represents an argument (described in Section 6) for dealing with the coupling of
ODE’s in time to the PDE-BC formulation of (2.1)-(2.2). The input to Postsis
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U - The 13-spline coefficients (3. 1) for the initial -~ of the PDE variablesu.
U(i,j), for i1, ,nx-k, are the coefficienb ~ j1, ,nu.

nu - The number n~ of PDE variablesu.

k - The 13-spline order to be used. k ~ 2 is necessary.

X - The B-spline mesh to be used. The multiplicity of X (I) and X (nx) must be k.

nx - The length of the mesh array X.

tstart - Start integrationat time tstart.
tstop - Stop integrationat time tstop. tstop should be a variable, flot a constant, in

the programcalling Posts,seeoutputdescription.

dt - The initial choice for the time-step. The performanceof Posts is substantially
independent of the initial value of dt chosen. It is sufficient that dt merely be
within several orders of magnitude of being “correct”. The value of dt will
automatically be adjusted by Posts to obtain the solution to the desiredaccu-
racy at the least possible cost. Thus, dt should be a variable, ~ota constant,
in the user’s calling program.

AF - A subroutine for specifying the a and f terms in the PDE. AF must be
declared External in the user’s calling program. This user-suppliedsubpro-
gram will be describedlater.

B - A subroutinefor specifying the boundaryconditionsb. B must be declared
External in the user’scalling program. This user-supplied subprogram will be
described later.

errpar - A Real vectorof length 2 for determining the error desired (to be allowed) in
the solution of the equations in time. For the

1th component of the PDE
solution u, the error at each time-step in the time integration will be at most

~ +errpar(2)

where

(L.R)
Thus, errpar(1)=0 gives the solution accurate to an absolute error of
errpar(2), and errpar(2) =0 gives the solution accurateto a relative error of
errpar(1).

Handle- A user-suppliedsubroutinewhich will be called by Postsat the end of each
time-step. Handle must be declaredExternal in the user’s calling program.
This subprogramwill be describedlater.

The output from Postsis

U - The B-spline coefficients for the PDE solution u at time tstop.

tstop - May be alteredby user-suppliedsubroutineHandle. If an error stateexists on
return (seesection7), tstop is set to the last instant in time when the solution
was known accurately. Thus, tstop should be a variable, flot a constant,in the
users call to Post.

dt - Final value of the “optimal” time-step.
The amountof scratch spaceusedon the dynamicstackof the PORT library [231is, neglecting
lower order terms,

~u (flx’k)[3k flu +18J

Real words (storageunits).
The user-suppliedsubroutinesAF and B, which define the PDE-BC problem to be solved,

are now described. When Postsneedsto computea andf, it will
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Call AF(t,Xe.nxe,U,Ux,Ut,Uxt,nu,* * *

A,AU,AUx ,AUt ,AUx t ,~ *

F, EU, Flix ,FUt ,FUx t ,~ *)

wherea * representsan ODE argumentdescribedin section 6. The input to AF is

- The current value of time.
Xe - A list of points wherea and f are to be evaluated.This Xe is no the 13-spline

meshX.

nxe - The lengthof Xe.
U - The values of u at the Xe(i). U(i,j) u1(t, Xe(i)). i=l, , nxe and

j=l, - ‘ ,nu.

Ux - The valuesof u~ at the Xe(i), storedas above.

Ut - The valuesof u, at the Xe(i), storedas above.

Uxt - The valuesof u~ at the Xe(i), storedas above.
nu -

A -

AU -

AUx -

AUt -

AUxt -

F -

EU -

FUx -

FUt -

FUxt -

AF must return

The number
An arrayset

An arrayset
An arrayset

An arrayset

An arrayset
An arrayset

An array set
An array set

An array set
An arrayset

as output

~u of PDE variablesu.
to zero, see
to zero, see

to zero, see
to zero, see

to zero, see
to zero, see

to zero, see
to zero, see

to zero, see
to zero, see

below for output
below for output
below for output

below for output

below for output
below for output

below for output
below for output

below for output
below for output

A - The value of a at the Xe(i).
j=I, - - - ,nu.

A(i,j) = a1(t,Xe(i)), for i—I, - ,nxe and

AU(ix.i.j)AU - The partial derivativesof a with respectto u at the Xe(i).
aa,/0u1 (t, Xe(ix)), for jx=I, - ,nxeand i,]=1, - - - ,nu.

AUx - The partial derivativesof a with respectto u~ at the Xe(i), as above.

AUt - The partial derivativesof a with respectto u, at the Xe(i), as above.
AUxt - The partial derivativesof a with respectto u,~, at the Xe(i), as above.
F - The value of f at the Xe(i). F(i,j) Fi,(t,Xe(i)), for ~=l, - - , nxe and

j=1, - ,nu.
EU - The partial derivativesof f with respect to u at the Xe(i).

~9f~/a~1(t, Xe(ix)), for ix=1, - ,nxeand i,]=I, - - - ,nu.
- The partial derivativesoff with respectto u~ at the Xe(i), as above.

- The partial derivativesoff with respectto u, at the Xe(i), asabove.

- The partial derivativesoff with respectto u at the Xe(i), as above.
needsthe boundaryconditionsit will

FUx
FUt

FUxt
When Posts

Call B(t,L,R,U,Ux,Ut,Uxt,nu, * * *

B,BU,BUx,BUt ,BUxt ,~ *)

FU(ix,i,j)

values.

valties.

values.

values.

values.

values.

values.

values.

values.

values.
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wherea * representsan ODE argumentdescribedin section6. The input to B is

- The current valueof time.

L - The left-handend-pointof the spatial domain.
R - The right-handend-pointof the spatialdomain.

U - U(i,I) u,(t,L) for i—I, , nu. U(i,2) = u,(t,R) for j=l, , nu.
Ux - Ux(i,1) is the value of u~½,L),as above. Ux(i,2) is the value of u~(~’,R),

as above.

Ut - Ut(i,1) is the value of u,(t,L), as above.
above.

Uxt - Uxt(i,1) is above. Uxt(i,2)
as

- The number
- An array set output values.

- An array set output values.
- An array set output values.

- An arrayset output values.
- An array set output values.

as output

nu
B

BU

BUx
BUt

BUxt
B mustreturn

B

BU

BUx

the value of u~,U,L), as

above.

~u of PDE variablesu.
to zero, seebelow for
to zero, seebelow for

to zero, see below for
to zero, seebelow for

to zero, see below for

andB(i,2) = bR,, i1,

ObL,/OuJ(t,L) and BU(i,j,2)

= 3bL,/0u
1X(t,L) and

nu.
— obR,/eUjt,R),

BUx(i,j,2) —

- B(,,1) = bL,

- BU(i,j,1) =

- BUx(i,j,1)
,nu.

BUt - BUt(i,j,I) t3bL,/OuJ,(t,L) and BUt(i,],2) —

,nu.
BUxt - BUxt(i,],1) = t9b~,/&u1,jt,L) and BUxt(i,j,2) =

,nu.
The user-suppliedoutput and control subroutineHandle is now described. At the end of each
time-step,Postswill

Ut(i,2) is the value of u,(,R), as

is the value of

i,j=1, ,nu.

abR,/~3UJX(t,R),

t3bR,/c3u1,(t,R),

Call Handle (tO ,UO, * , t I ,UI ,~ ,nu, nxmk, * ,k ,X, nx,
d t , t stop)

so that the user may look at, print out, plot, fondle, or do whateveris desiredwith the solution.
If the output at the end of each time-stepis not desired,and only the solution at time tstop is
needed,the “Return-End” HandlesubroutinePostHmay be used. The input to Handle is

tO -

UO -

ti —

UI -

Time at the beginningof the time-stepjust completed.

PDE solution u at time tO is given by B-spline coefficientsUO.
Time at the endof the time-stepjust completed.

PDE solution u at time tI is given by B-spline coefficients Ul. If tO = ti,
then a restart is in progressand the valuesin Ul are meaningless.

nu - The number~u of PDE variablesu.
nxmk - nxmknx-k is provided so that UO and UI may be dimensionedto be

UO(nxmk,nu) andU1(nxmk,nu)
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k - The 13-splineorder.
X - The 13-splinemesh.

nx - The length of the meshX.
dt - The current “optimal” value of dt.
tstop - The current final value for time.

The output from Handle is

tI - May be alteredby the user.
UI - May be alteredby the user.

dt - May be alteredby the user.

tstop - May be alteredby the user.

The Double Precisionversionof Postsis called Dposts. The calling sequencefor Dposts is pre-
cisely the sameas that for Posts, with all floating-point argumentsDouble Precision, except
errpar, which remainsReal. The amountof scratchspaceused by Dpostson the dynamicstack
of the PORT library [231 is, neglectinglower order terms,

~u (n~~k)[3k ~u +16J

Double Precisionwords (storageunits).

The examplesgiven below, and in section 6, are intended to both illustrate the use of
POST and provide prototypesfor a prospectiveuser. Anyone contemplatingusing POST would
be well advisedto pick an example program, which invokes those capabilities of POST the
intendedproblem will require,and keypunchit (or obtain a copy of the examplecode from the
author). After running the example,and confirming the correctnessof the program, the AF
and BC subroutinesspecifying the PDE-BC may simply be alteredto solve the user’sproblem.
This progressionmakesit much more likely that the user will easily produce a correctprogram
unit for the problemat hand.

Example1.

As a simpleexampleof the use of Posts,considersolving the scalarheatequation

Ut = u~+g(t,x) on (0,1) (4.1)

where the sourceterm g(t,x) is chosen( g = (x~,2)ext ) so that the solution is a known func-

tion, u(t,x) = ext. The boundaryconditionsare then takento be
u(t,O) =

(4.2)

u(t,1) =

with initial conditions

u(0,x) = I . (4.3)

The following program unit, written in Ratfor [321, solves (4.l)-(4.3) using Posts,with a
cubic B-spline (k = 4) over a spatial mesh consisting of 4 equally spaced,distinct points on
(0,1), with the time evolution carried out to 102 relative accuracy. The main program uses
several PORT [231 library subprograms. The first is the utility subprogramUmb for making
uniformly spacedB-spline meshes. The secondis the Setr subroutinefor setting an array to a
given Real constant. Setr is usedto provide the constantIC’s (4.3) via the B-spline coefficients
(3.1), taking advantageof the fact that if all the B-spline coefficientsare equal to a constantc,
then the B-spline itself is identically equal to that constantc (see Appendix 1). Had the IC’s
(4.3) beennon-constant,other PORT library subprogramscould be used to fit the IC’s with a
B-spline (for example: L2sff for continuousIC’s and DI?sf for fitting discreteIC data). At the
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1 1 2
end of each time-step the solution is printed out at x — — and — The “Return-End” sub-

3’ 2
routine PostD is usedas a dummy place-holderfor a subroutine neededto deal with coupled
ODE’s, as describedin section 6. Note that the ODE place-holderV neednot be initialized,
sinceit is neverinterrogatedby POST. The main programis

Real ts top,V( 1) ,dt ,Mesh( 100) ,U( 100)
Real errpar(2)
External AF,BC,PostD,Handle

nu = I nv = 0

err par (1) 1 . Oe -2 err par (2) = I . Oe -6

tstop = l.OeO dt I.Oe-6

ndx = 4 # The number of distinct B-
Call Umb(0.OeO, I .OeO,ndx,k,Mesh,nmesh)

Call Set r (nmesh- k, I . OeO,U)

Call Posts

spline mesh PO i n t 5

#lnitial conditions for U.

(U, nu, k ,Mesh, nmesh ,V, nv,
0.OeO, tstop,dt,
AF,BC,Pos tD,nv,
err par
Handle)

Since n~ = I, the AF and BC subroutineslisted below use particularlysimple dimensionstate-
ments for their arguments.Note that since the arraysA FUxt are set to zerobefore entry
to AF, only the active a andf terms, andtheir derivatives, needbe computedin AF. The sub-
routine AF for specifying the PDE (4.1) is

Subroutine AF(t,Xe,nxe,U,Ux,Ut
A,AU,AUx,AUt ,AUx
F,FU,FUx,FUt ,FUx

,Ux t,
,AV,
,FV,

nu,V,Vt ,nv,
AV t,
FV t)

Real t,Xe(nxe),U(nxe),Ux(nxe),Ut
A(nxe),AU(nxe),AUx(nxe),AUt
F(nxe),FU(nxe),FUx(nxe),FUt

(nxe) ,Uxt
(nxe) ,AUx
(nxe) ,FUx

(nxe)
t (nxe)

(nxe)
,AV(nxe),AVt(nxe),
,FV(nxe) ,FVt(nxe)

Do

A(i) =

F(i) =

FUt(i)

= I , nxe

Ux(i) AUx(i) =

Ut ( i )+( -Xe( i )+t**2) *Exp(Xe( i ) * t )
—1

Re turn

k=4

Stop

End

End
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The subroutine BC for specifying the BC’s (4.2) is

Subroutine BC( t ,L,R,U,Ux,Ut ,Uxt ,nu,V,Vt ,nv,
B,BU,BUx,BUt,BUxt ,BV,BVt)

Real t ,L,R,U(2) .Ux(2) ,Ut (2) ,Uxt (2) ,V( I) ,Vt (I)
13(2) ,BU(2) ,BUx(2) ,BUt (2) ,BUxt (2) ,BV(2) ,BVt (2)

13(1) U(I)-l.OeO
13(2) U(2)-Exp(t)

# u( t ,0)
#u(t,I)Exp(t).

BU(I) =
BU(2)

Re turn

End

11 2
The following output subroutinesimply prints u(i’,x), for x = y, -i-. and at the end of

each successfultime-step. The dimensionstatementfor the various argumentsis for arbitrary
input, and thus will not be repeatedin subsequentexamples.

Subroutine Handle(tO,UO,VO, tI ,UI ,Vl ,nu,nxmk,nv,k,X,nx,dt, tstop)

Real tO,UO(nxmk,nu) ,VO(nv) , tI ,UI (nxmk,nu) ,VI (nv) ~X(nx) ,dt, tstop

Real xe(3),Ue(3)

If ( tO ti ) ( Return I

xe(1) 1.OeO/3.OeO xe(2) O.5e0 xe(3) 2.OeO/3.OeO

Call Spl’ne(k,X,nx,Ul ,xe,3,Ue)

Wr i te( I lmach(2) ,9000) t I, (Ue(
9000 Format(”U(x,”,lple9.2,”

) ,i=l,3)

) =“ , lp3eIO.2)

Re turn

End

The output of the above program is

1 .OOE-06
7. 38E-04

58E-01
6. 20E-0l

OOE 00

= 1.OOE
) 1.OOE
) = lOSE

= l.23E
) = 1.40E

00
00
00
00
00

I . OOE

OGE
08E

1. 37E

6SF

00
00
00
00
00

OOE
• OGE

1.1 IE
1. 52E

95E

00
00
00
00
00

A skeptic might observethat it is difficult to determinethat the aboveoutput is in fact accurate
to I/o. Well, since the exact solu”tion of the problem is known, the programmay also checkthe
accuracyof the numericalsolution using the PORT [231 library subroutineEesffto estimatethe
error Iju—i~ii in the computed solution t~. By changingthe body of Handle to read

U(X,
U(X.
U(X,
U(X,
U(X,
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Conrnon /Time/
Real tt

Real eU,Eesff
External Uofx # Returns u( t ,x) Exp(xt)

If ( tO = ti ) { Return

t t=t I

eU=Eesff(k,X,nx,UI,Uofx)

Wr i te( I lmach(2) ,9000) t t ,eU
9000 Format(” Error in U(x,

# Get the error in UI

I p1 e9 . 2, lple9.2)

where the following subroutinecomputesthe exactsolution u of (4.l)-(4.3)

Subroutine Uofx(x,nx,U,W)

Real x(nx),U(nx),W(nx)

Coninon /Time/
Real

Do i = I , nx

)Exp ( x ( i ) *

Re turn

End

we may obtain the output

ERROR
ERROR
ERROR
ERROR
ERROR

IN U(X,
IN U(X,

IN U(X,
IN U(X,

IN U(X,

I .00E-06
7. 38E-04

• 58E-01
6. 20E-0I

OGE 00

) — 2.98E-08

— 1.19E-07
— I.19E-03
— S.96E-03
— 6.84E-03

and we canseethat (4.1)-(4.3) has indeedbeensolved accurateto IA.

Example 2.

In example I u~ may be computed from the B-spline representation for u. However, u is
accurate to O(hk), while u, is only accurate to O(hkI), where h is the 13-spline mesh spacing
used,see Appendix 1. The next exampleshows how u~ may be computedaccurateto O(hk)
by considering(4.1)-(4.3) as a systemof 2 coupledPDE’s through setting u1 — u andu2 = u~.
The PDE (4.1) thenbecomes

UIt = u2x+(xt
2)ext

(4.4)

UIx = U
2

tt

andthe BC’s (4.2) become
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(4.5)

u1 ( t, I ) = et

The initial conditionsare

u1(0,x) =

(4.6)

u2(0,x) = 0.

The following program
consisting of 4 equally
10—2 absolute accuracy.
the computedsolution.

solves (4.4)-(4.6) using Posts,with a cubic 13-spline,over a spatialmesh
spaced,distinct points on (0,1), with the time-evolutioncarriedout to

The error at each time-step is printed out to confirm the accuracyof
The main program is

Real tstop,V(l) ,dt,Mesh(l00) U(200)
Real errpar(2)
External AF, BC, Pos tD,Hand I e

nu 2 nv 0

errpar(I)0 errpar(2)”1.Oe-2

tstop I.OeO dt = I.Oe-2

k=4

ndx 4
Call Umb(

# The number of distinct B-
0. OeO, I. OeO, ndx, k ,Mesh, nmesh)

spl me mesh

Call Setr(nmesh-k,1.OeO,U) #lnitial
Call Setr(nmesh-k,0.OeO,U(nmesh-k+l

condi t ions
# Ini tial

for UI=l
conditions for U2t).

Call Posts (U, nu, k ,Mesh, nmesh ,V, nv,
0.OeO, tstop,dt,
AF, BC, Pos tD, nv,
err par,
Handle)

Stop

End

The dimension statements for the various argumentsof the AF and BC subroutinesgiven
below are for arbitrary input, and thuswill not be repeatedin subsequentexamples. The sub-
routine AF specifying the PDE (4.4) is

P0 i n t 5
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Subroutine AF(t,Xe,nxe,U,Ux,Ut
A,AU,AUx,AUt ,AUx
F,FU,FUx,FUt ,FUx

,Ux t , nu,
,AV , AV t,

,FV,FVt)

Real t,Xe(nxe) ,U(nxe,nu) ,Ux(nxe,nu) ,Ut(nxe,nu) ,Uxt(nxe,nu)
V(nv) ,Vt (nv)
A(nxe,nu) ,AU

F(nxe,nu)

(nxe
AU t (n x e
AV (nxe
FU (nxe,nu
FUt (nxe,nu
FV (nxe,nu

,nu, nu)
,nu, nu)
,nu, nv)

,nu)
,nu)
,nv)

,AUx
~AUx
,AV
,FUx
,FUx
,FV

(nxe
(nxe
(nxe
(nxe
(nxe
(nxe

= I nxe

A( i , 1) = U(

F( i .1) = Ut (
Flit ( i ,I,I) = 1

A( i , 2) = U( i . I
F(i,2) = U(i,2)

2) AU(i,l,2)
1 )+( -Xe ( i )±t * * 2) * Exp (Xe ( i ) *

AU(i,2,l) = I

FU(i,2,2) =

Re turn

End

The subroutineBC specifying the BC’s (4.5) is

Subroutine BC(t R ,U,Ux ,Ut ,Ux t ,nu ,V,Vt , nv,
B,BU,BUx,BUt ,BUxt ,BV,BVt)

Real t,L,R,U(nu
B(nu,2) ,BU

BU
BV

,2) ,Ux(nu
(nu, nu, 2
(nu , nu,2
(nu, nv, 2

,2) ,Ut

,BUx
,BUx
,BVt

(nu,
(nu,
(nu,
(nu,

2) ,Uxt
nu, 2)
nu,2)
nv, 2)

(nu,2),V(nv),Vt(nv),

B(I,1)=U(I,l)-1.OeO # U(t,0) 1.
#U(t,l)Exp(t).

BU( 1,1 ,1) = I
BU(l,1,2) =

Re t u r n

End

The body of the Handle subroutinesimply checksthe accuracyof the computedsolution, using
Eesff,

V,Vt ,nv,

Do

,nu,nu)
,nu,nu)
,nu,nv)
,nu,nu)
,nu,nu)
,nu, nv)
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Con~non /Time/ tt

Real tt

Real eU(2) ,Eesff
External Ulofx,U2ofx #To compute ul and u2.

If ( tO tI ) I Return I

t t=t I

eU(l) = Eesff(k,X,nx,
eU(2) Eesff(k,X,nx,

Wr i te( I Imach(2) ,9000
9000 Format(” Error

where the following subroutine
tion, U

1,

Subroutine Ulofx(x,

Real x(nx) ,U(nx) ,W(

Cormion /Time/
Real

Do i = I , nx

U( i )=Exp(x( )* t)

Ul (1 1) ,Ulofx)
UI (1,2) ,U2ofx)

,eU( 1) ,eU(2)
inU(x,”,lple9.2,” )“,1p2e9.2)

computesthe exact value of the first componentof the solu-

Re turn

nx ,U,W)

nx)

me U2ofx(x,nx,U,W)

nx) ,U(nx) ,W(nx)

/Time/

End

and the following subroutinecomputesthe exact value of the secondcomponentof the solu-
tion, U2,

Subrou

Real x(

Cormio n
Real
Do i

nx

*Exp( x ( i ) * )

Re turn

End

The output of this programis
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ERROR IN U(X, l.OOE-02 ) = 1.3513-05 2.33E-04

ERROR IN U(X, 7.00E-02 ) = 2.89E-04 2.60E-03
ERROR IN U(X, I .84E-01 ) = 1.4313-04 5.0013-04
ERROR IN U(X, 5.45E-0l ) = 3.5313-04 1.2413-03
ERROR IN U(X, 1.0013 00 ) = 6.1613-04 2.8213-03

One reason for treating (4.l)-(4.3) as the system (4.4)-(4.6) is that the spatial derivative u
2 of

u = u1 is obtainedaccurateto O(hk), instead of O(hkI). In fact, for this example, the error
in u~, as computedby differentiating the solution of (4.l)-(4.3), was 5.2 *10~2 and that com-
putedfrom (4.4)-(4.6) was 2.8 ,10~.

5. Coupled ODE’s and Non-Local Conditions.
It is often necessaryto make a non-local statementabout the solution of a PDE. For

example, the solution may be periodic [311, or it may be defined in a coordinatesystemwhich
is rotating, acceleratingor being dynamically scaled [391. Such statementsmay be accommo-
datedusing the ability of POST to couple ODE’s in time to the PDE-BC formulationof section
2. PDE-ODEcoupling may also arisenaturally in the formulation of a problem [561.

How may a variable, say v(A, which depends only upon time, be coupled to a variable,
say u(t,x), which depends upon both space and time? One way would simply be to tie the
valueof u at a single point in space,say x=0, to the value of v’(t) by a relation like

v (t) = u(0,t).

The mechanismused by POST to handle suchconditionsis to say that thereare ODE variables
v(t) which are coupledto the PDE variablesu(t,x) through the valuesof u(t,x), and its partial
derivatives,at a finite numberof points x. Let ~W, the list of coupling points ~, be a known
vectorof length n~. Generalizing(2.1)-(2.2), the PDE is assumedto havethe form

a(t,x,u,u~, u~, ~ V. = f(t, x, u, u~, u~, ~ v, v,) (5.1)

while the BC’s are assumedto havethe form

bL(t, u(,L), u~(,L), u~(,,L), u~,(,,L), v, v,) = 0

(5.2)

bR(, u(t,R), u~(,R), u(,R), u~,(i’,R), v, v,) = 0.

The ODE’s determiningthe ODE variablesv are assumedto have the form

where d is vector-valuedfunction of its arguments,and the notationu(,~(A) representsthe
list

The length of d must be ri,,.

The PDE-BC-ODE combinationmust have the property that if the ODE solution vector
v(t) weregiven rather than unknown, then the resulting PDE-BC problemgiven by (5.1)-(5.2)
would be well-posed. That is, the ODE must be coupled to a PDE-BC systemwhich is well-
posedin the sensedescribedin section9.

For certain applications,neitherv nor v~ may actually be presentin d, and (5.3) may not
be a differential equation involving v and v~. In thesecircumstances,d merely representsa
condition to be placed upon the PDE solution u. Such a caseoccurswhen a condition like

J’u(t,x)dx = I
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is to be imposedon the solution of the PUP, rather than a “standard” boundarycondition. By

replacing

U ( t , x) dx

overeach B-spline mesh interval, by a (jaussian-quadraturerule 1371 using k/2 points, the full
integral may be computed exactly since the numerical solution u is a 13-spline of order k
(degreek—I). Thus, an integral statementabout the solution of the PUE is equivalent to a
statementinvolving only the value of u(t,x) at a finite numberof (iaussian-quadraturepoints
x.

6. Software for PDE-BC-ODE Combinations.
Postsis invoked by

Call Posts(U,nu,k,X,nx,V,nv,
star t t stop, d

AE,B,D,nxi
err par
Handle)

The input to Posts is precisely as described in section 4, with the exceptions and additions
noted below.

V - The initial conditions for the ODE variables v. V(i) v~, i= I, , nv.
If n,, is 0, V may be any array, and need not be initialized, since the con-
tentsof V are neither interrogatednor altered in any way in this case.

nv - The number n,, of ODE variablesv.

AF - A subroutinefor computing the a and f terms in the PUE. AF must be
declaredExternal in the user’s calling program. This user-suppliedsubrou-
tine will be describedlater.

B - A subroutinefor computing the boundaryconditions. B must be declared
External in the user’s calling program. This user-suppliedsubroutinewill
be describedlater.

D - A subroutinefor computing the ODE d. D must be declaredExternal in
the user’scalling program. This user-suppliedsubroutinewill be described
later.

nxi - The maximum numberof spatial PDE-ODEcoupling pointsallowed.

errpar - A Real vector of length 2 for determiningthe error desired(to be allowed)
in the solution of the equationsin time. Eor each componentof the ODE
solution v, the error at each time-step in the time integration will be at
most

errpar(l) 1 v, (+errpar(2).
Thus, errpar(1)=0 gives the solution accurate to an absblute error of
errpar(2),and errpar(2)=0 gives the solution accurateto a relative error of
errpar(l).

Handle - This user-suppliedoutput subroutinewill be describedlater. llandle must
be declaredExternal in the user’scalling program.

The outputof Postsis also as describedin section4, with the addition that

V - The value of v(tstop).

The scratch space used on the dynamic stack of the PORT library [231 is, neglectinglower
order terms,
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n~ (n~k) [3k n~ + n,, + 16J

Real words (storageunits).

The user-suppliedsubroutinesAF, B and D, which define the PDE-BC-ODEproblem to
be solved,are now described. When Postsneedsto computea and f, it will

Call AF(t,Xe,nxe,U,Ux,Ut,Uxt,nu,V,Vt,nv,
A,AU,AUx,AUt ,AUxt ,AV,AVt,
F, EU, FUx , FUt ,FUx t ,FV, FVt)

The input

V
Vt

nv
AV
AVt

FV

FVt

The output

AV

to AF is as describedin section4, with the additionof

- The valuesof v(A. V(j) = v,(A, i=l, , nv.
- The valueof v(t). Vt(i) = vt, i—I, , nv.
- The numbern~ of ODE variablesv.
- An array set to zero, see below for outputvalues.

- An array set to zero, seebelow for output values.

- An array set to zero, seebelow for output values.

- An array set to zero, see below for output values.

from AF must be as describedin section4, with the addition of

- The partial derivatives of a with respect to v at the Xe(i). AV(ix,i,j)
Oa,/~v1(t,Xe(ix)), for ix=1, ,nxe, i=l, ,nu, and j=l, ,nv.

AVt - The partial derivativesof a with respectto v~ at the Xe(i), as above.

FV - The partial derivatives of f with respect to v at the Xe(i). FV(ix,i,j)
Of,/~v1(t,Xe(ix)), for ix=l, ,nxe, i=l, ,nu, and j=1, • ,nv.

- The partial derivativesoff with respectto v~ at the Xe(i), as above.

needsthe boundaryconditionsit will

FVt

When Posts

Call B( t,L,R,U,Ux,Ut,Uxt,nu,V,Vt,nv,
B,BU,BUx,BUt ,BUxt ,BV,BVt)

The input to

V

Vt

nv

BV

BVt

The output

BV

BVt

WhenPosts

B is as describedin section4, with the additionof

- The valueof v(t), V(i) = v,(A, i—I, , nv.

- The valueof v.(A, Vt(i) = v1(b, i=l, , nv.

- The numbern,, of ODE variablesv.

- An array set to zero, seebelow for output values.

- An array set to zero, see below for output values.

from B must be as describedin section4, with the addition of

- BV(i,j,1) = ObL,/e
9vJandBV(i,j,2) = t3bR

1/
8vJ,for i,j=1, ,nv.

- BVt(i,j,1) = ObL,/0v
1, and BVt(i,j,2) = abR,/#3v11, for i,j=1, ,nv.

needsthe value of d it will

Call D(t,k,X,nx,
U,Ut,nu,nxmk,V,Vt,nv,
Xi, lxi ,nxi
D,DU,DUx,DUt,DUxt,DV,DVt)

The input to D is
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- The

- The

- The

- The

current valueof time.

B-splineorder.

B-spline mesh.

length of the meshX.

The B-splinecoefficientsfor the PDE solution u.

- The B-splinecoefficientsfor u~.

- The numberof PDE variablesu.
mk - nxmk=nx-k is provided so that

U(nxmk,nu) and Ut(nxmk,nu).

- Thevalueofv(t).
- The valueof v,W.

- The number n,, of ODE variablesv.

- The maximum numberof spatialcoupling

- An array set to zero, see below for output

- An array set to zero, seebelow for output

- An array set to zero, seebelow for output

- An array set to zero, see below for output

- An array set to zero, seebelow for output

- An array set to zero, seebelow for output

V

Vt

nv

nxi

D

DU

DUx

DUxt

DV

DVt

The output

Xi

lxi

D

DU

DUx

DUt

DUxt

DV

DVt

The user-supplied
Postswill

U and Ut may be dimensioned to be

pointsallowed.

values.

values.

values.

values.

values.

values.

from D mustbe as describedin section4, with the addition of

- The list of spatial coupling points ~.

- The currentactive length of Xi. Must have0 = lxi = nxi.

- D(i) = d,, for i=l, ,nv.

- The value of the partials of d with respect to u(r,~,).
~d,/~u~U,Xi(ix))~ i—I, • ,nv, ]=l, ,nu and ix=l,

- The value of the partialsof d with respectto ~

- The valueof the partialsof d with respectto u,(,~,).

- The valueof the partialsof d with respectto ~

- The value of the partials of d with respect to v,. DV(i,j)
i,j =1, ,nv.

- The value of the partials of d with respect to v,,. DVt(i,j)
i,j = 1, ,nv.

output subroutineHandle is now described. At the end of

•DU(i,j,ix) =

• .Ixi.

— Od,/0v1. for

— ~d,/~v1’ for

each time-step,

Call Handle (tO ,UO ,VO, t I ,UI ,VI nu, nxmk , nv. k ,X, nx,
dt , tstop)

The input to Handleis as describedin section4, with the additionof

VO - The ODE solution vUO) is given by VO.

Vi - The ODE solution v(tI) is given by VI. If tO = tl. then a restart is in pro-
gressand the valuesin UI andVi are meaningless.

nv - The numbern~ of ODE variablesv.

The output from Handleis as describedin section4. with the additionof

k

X

nx

U

Ut

nu

nx
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VI - May be alteredby the user.

The Double Precisionversion of Postsis called Dposts. The calling sequencefor Dpostsis pre-
cisely the sameas that for Posts, with all floating-point argumentsDouble Precision, except
errpar, which remainsReal. The amount of scratchspaceusedby Dpostson the dynamic stack
of the PORT library [231 is, neglectinglower order terms,

n~k) [3k ~u +fl,, +161
Double Precisionwords(storageunits).

Example1.

The first exampleof the use of Poststo solve a PDE-BC-ODEcombinationis contrived to
be simple, but illustrative. Considerthe PDE

= u~+v(A+g(,x) on (0,1) (6.1)

with the coupledODE

= u(t 1) (6.2)
‘2

where g(t,x) is chosen so that the solution is known, say u(t,x) = cos(xt) and
v(t) = 2sin(t/2). The BC’s are then takento be

u(t,0) =

(6.3)

u(t,l) = cos(A

with initial conditions

u(0,x) =

(6.4)

v(0) =0.

The following program solves (6.1)-(6.4) using Posts,with a cubic B-spline (k = 4) over
a spatial meshon (0,1) consistingof 4 equally spaced,distinct points, with the time evolution
carriedout to 10—2 relative accuracy. The error at each time-step is printed out to confirm the
accuracyof the numericalsolution. The main programis
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Real
Real
Ext e

,Mesh( 100) .U( 100)tstop,V(l) ,dt
err par (2)

ml AF, BC,Dee,Hand I e

nu = I nv =

err par (I) I . Oe -2 e r rpa r (2) = I . Oe -6

tstop = lOcO dt = l.Oe-6

k=4
ndx = 4 # The number of distinct points in the B-spline mesh.
Call Umb(0.OeO,l.OeO,ndx,k,Mesh,nmesh) #Create the mesh.

Call Setr(nmesh-k,1.0e0,U) #lnitial
V(1) = 0 # Initial value for V.

condi t ions

Call Posts(U,nu,k,Mesh,nmesh,V,nv,
0.OeO, tstop,dt,
AF, BC,Dee,nv,
err par
Handle)

Stop

End

The only change in the subroutineAF of
the PDE, (6.1),

example 2 in section 4 is in the code for specil~ying

Do i 1 , nxe

,1) = Ux( i I)
F(i,1) = -V(1)+Ut

Xe( i ) ~S
FUt(i,1,1)
FV( i , I ,1) = —

AUx(i,1,l) =

(i ,1 )+
in (Xe (

The only change in the subroutineBC of
the BC’s, (6.3),

B( I ,1) = U( I ,1)- I . OeO
B(1,2)=U(l,2)-Cos(t)

* t ) - t * * 2*Cos (Xe ( i ) * t )+2 . OeO*S in ( t /2 k)cO

example 2 in section 4 is in the code for specifying

# u(t,0) = 1.
u ( t , I ) Cos ( t )

BU( I , I , 1) = I
BU(1,I,2) =

The following subroutine specifies the d of (6.2). The dimensionstatementfor the \Jrious
argumentsis for arbitrary input, and thuswill not be repeatedin subsequentexamples.

for U.
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Subroutine Dee t k ,X, nx
U,Ut ,nu~ nxmk ,V,Vt ,nv,
Xi d ,LXi d ,NXid,
D,DU,DUx,DUt ,DUxt ,I)V,[)Vt

Real t,X(nx) ,U(nxmk,nu) ,Ut(nxmk,
D(nv),DU (nv,nu,NXid),DUx

DUt(nv,nu,NXid),DIJxt(
DV(nv,nv),DVt(nv,nv)

nu),V(nv),Vt(nv),Xid(NXid),
nv,nu,NXid)
nv,nu,NXid)

Real Ewe(I)

Xid(1) = 0.SeO LXid =

Call Splne(k,X,nx,U,Xid, I ,Ewe) # Ewe(l) = u(t, 1/2 ).

D( I ) Vt (1) —Ewe (1) EX..J( I , 1 , I ) = — 1 DVt (1 1) =

Re turn

End

The only change in the Handlesubroutineof example2 in section 4 is in the codefor comput-
ing andprinting the error in the computedsolution.

Conrnon /Time/ tt

Real tt

Real eU,eV,Eesff
External Uofx #Tocomputeu(t,xV

If ( tO = ti ) I Return

t t=t I

eUEesff(k,X,nx,UI ,Uofx) eV=Abs(VI (I )~2.0e0*Sin(tI/2.OeO))

Wr i te( I lmach(2) ,9000
9000 Format(” Error

error

) tl,eU,eV
in U(x, “ , lple9.2,
in V =“,lplelO.2)

The only change in the subroutineUofx, for computing
code for computing u.

u, of example I in section 4 is the

Do i = I , nx

U( i )=Cos ( x ( i ) * t

) =“,lple9.2,

The output from this programis
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ERROR IN U(X, 1.0013-06 ) = 2.241 -08 FRROR IN V = 0.
ERROR IN U(X, 7.4013-04 ) = I . 191 -07 LRROR IN V = 5.8213-Il
ERROR IN U(X, 1.5513-01 ) = 1.0913-03 ERROR IN V = 2.52E-04
ERROR IN U(X, 4.6213-01 ) = 2.61E-04 ERROR IN V = 2.09E-04
ERROR IN U(X. 1.0013 00 ) = 1.0413-04 ERROR IN V = 6.6913-04

and we seethat (6.l)-(6.4) has indeed beenaccuratelysolved.

Example 2.

The secondexample is the use of Posts to solve a nonlinear heat equation subject to
periodic boundaryconditions. Considerthe P1)13

= u~ —u3+g(,x) on (—tr,+tr). (6.5)

subject to periodic boundaryconditions

u(
1t,—7r) = u(,+ir) (6.6a)

Ux(t,7T) = u~(t,+ir) , (6.6b)

where g(t,x) is chosento make the solution u a known function, say u(~x) = cos(x)sin(t).
We must re-write (6.5)-(6.6) slightly to put it into the form (5.1 )-(5.3). Define an ODE vari-
able vW, which will play the role of u(t,—ir) = u(,+tr). The BC’s usedare

= v(t)

(6.7)

= v(t)

which force (6.6a) to hold. The remainingcondition, (6.6b). is used to determinev(t). Rela-
tion (6.6b) is an exampleof an ODE of the form (5.3) which has neitherv nor v~ present. The
ODE used to determinevW is then

u~(tj7T) = Ux(t,+77’) , (6.8)

which forces (6.6b) to hold. The effect of (6.7)-(6.8) is to treat (6.5)-(6.6) as a PDEI-BC prob-
lem whosesolution has floating, v(t), boundaryvalueswhich are to be determinedby (6.8).

The following program solves the PDE-BC-ODE combination (6.5)-(6.7)-(6.8), using
cubic B-splinesover a meshconsistingof 7 equally spaced,distinct points on (—7r,±1r).with
the time-evolutioncarriedout to 10—2 relative accuracy. The error at each time-step is printed
out to confirm the accuracyof the computedsolution. The main programis
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Real
Real
Ex t e

tstop,V( I

err par (2)

rnal AF,BC

,dt ,Mesh( 100) ,U( 100)

,Dee,HandI e

nu = I nv =

errpar(l) = 0 errpar(2)

tstop=8.OeO*Atan(l.OeO)

k=4

ndx 7
Call Umb(

dt = l.Oe-l

#The number of distinct B-splinemesh points.
~4.0e0*Atan(l.0e0),±4.0e0*Atan(l.0e0),ndx, k ,Mesh . nmesh)

Call Setr(nmesh-k,0:OeO,U) # Ini t ial condi t ions

V(1) 0 # Ini t ial condi t ions for V.

Call Posts(U,nu,k,Mesh,nmesh,V,nv,
0.0e0, tstop,dt,
AF, BC,Dee,2,
err par
Handle)

Stop

End

The body of the subroutine AF for (6.5) is

Do i = nxe

1) = Ux
F(i,l) = Ut

EU t ( i I,

(i,
Cos

) 1

1)

1 )+U(

(Xe(
,FU

AUx ( i , I ,

) ) * (Cos

(i,l,l)

— I

n( t )+Cos (Xe ( i ) ) * *2*S in ( ) * *3)

= 3 . 0e0~’U( i , 1) * * 2

while the body of the subroutine BC for (6.7) is

B(l ,2) = U(1 ,2)—V(l)

BU( I , I , 1)

BU(l,1,2) = 1
BV( I , I , 1)

BV(l,l,2)

= I .Oe-2

for U.

and the body of the subroutineDee for (6.8) is
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Real UL(2),UR(2)

Xi(l) = X(l) Xi(2) X(nx) [.Xi 2

Call Splnd(k,X,nx,U,Xi (I), I .2,UI.)
Ca II Sp I nd ( k , X. nx ,LJ,Xi (2) I , 2 , UR)

D(l) =UR(2)-UL(2)
DUx(l,l,2) = DUx ( I , I ,

The body of the subroutine Handlefor coniputingand printing the error is

Coninon /Time/ tt
Real tt

Real eU,Eesff,eV
External Uofx # To compute tJ(t,x).

If ( tO tI ) I Return I

t t=t I

eU~’Eesff(k,X,nx,Ul,Uofx) : eV = VI (I )+Sin( t I

Wr i te( I lmach(2) ~9000)
9000 Format(” Error in

error in

eU. eV
U(x, “, lple9.2,
V “=“, lpielO.2)

) =“, lple9.2,

where the body of the subroutineUofx is

Do i I , nx

U ( i ) ‘=Co s ( x ( i ) ) * 5 i n ( t

The output of this programis

— 3.7713-04
— 6.4613-03

— 6.0713-03

— 6.93E-03
— 9.92E-03
— 9.59E-03

— 1.45E-02

— 1.1513-02
— 8.31E-03

— 8.49E-03
— 7.79E-03
— 7.23E-03

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

IN V
IN V
IN V
IN V
IN V
IN V
IN V
IN V
IN V
IN V
IN V
IN V

-3.7713-04
= -6.4613-03

-5. 47E-03
-6. 93E-03

= -9.92E-03
= -2.1913-03
= 6.1513-03

= -9.6513-03

8.3113-03

-6.3613-03
= -4.3213-03
= -4.1613-03

7. Error States.
This section providesa list of the error states[231 which may be encounteredwhen using

POST. Some interpretationof theseerror messagesis made to aid the user in finding bugs(if
they exist) in the user-suppliedcode AF, B, 1) or Handle. For each level of (entry to) POST,
the error messagefor a given error state is the same,but the error numbermay vary from one
level to the next. The list of error statesbelow, along with interpretation, is the completeset

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR

IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,
IN U(X,

1.0013-01
9.2113-01
1.3313 00
l.59E 00
2.2IE 00
2.61E 00
3.09E 00
3.8313 00

4.9413 00

5.76E 00
6.lOE 00
6.28E 00
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of error statesfor the POST packageas obtainedfrom the lowest level of POST,namely PostB.
The error statesflagged by an * can occur only \~hen POST is enteredat a level below Posts.
they cannotoccur when Posts is invoked.

I - nu<0.

2 - nv<0.

3 - nuO’nv.

4 - nu>Oandk<2

5 - nu>Oandnx<2*k.

6 - tstart+dttstart. The user-choseninitial value for the tinle-stepdt is too small.

7 - The input value of dt has the wrong sign. dt and tstop-tstart must have the same
sign.

8 - nxid<0.

9* - theta<0 or theta>l.

10* - Keepjacnot oneof (0,1.2).

11* - miter<l.

12* - mgq<I.

13* - kmax<1.

14* - kinit<l.

IS - x( 1) is not of multiplicity k.

16 - x(nx) is not of multiplicity k.

17 - x is not monotone increasing.

18 - Cannothavenxid>0 and nuO.

19 - Cannothavenxid>0 and nvO.

20 - dtO. (Recoverable). The time-step has becometoo small. The problem may be
very badly scaled, that is units like light-yearsand micro-gramsare being usedsimul-
taneously. Another cause is too small an accuracy requirement, like errpar(2)=0
when the solution is exceedinglysmall.

21 - dt=0 returned by handle. (Recoverable). Handle lowered dt and it became too
small.

22 - dt returned by Handlehas the wrong sign. (Recoverable).

23* - Cannotraisedt in Handlewhen Failed. (Recoverable).

24 - e(i) < =0 returnedby Error. (Recoverable). The error requestis too small.

25 - Dirichlet BC’s are overdetermined.(Recoverable). There are too many Dirichlet
BC’s.

26 - Mixed BC’s are overdetermined.(Recoverable).There are too many mixed BC’s.

27 - Improper BC’s. (Recoverable). The BC’s and the PDE’s do not match properly. see
section 9.

28 - Too few BC’s. (Recoverable).

29 - Too many BC’s. (Recoverable).

30 - lxid<0. (Recoverable). User supplied subroutine D returned lxid<0.

31 - lxid>nxid. (Recoverable). User supplied subroutine D returned lxid>nxid.
32 - nxid alteredby D.
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33* - mgqk-l and Order(i,j) =0. (Recoverable). Must have mgq=k when one of the

PDE’s is of zeroorder.

34 - P1)13(i) is vacuous.(Recoverable).There is no ~ P1)11.
35* - AF Failure. (Recoverable).AF failures forced dtO.

36* - B Failure. (Recoverable). B failures forced dt=0.

37* - D failure. (Recoverable). D failures forced dtO.

38 - SingularDirichlet BC’s. (Recoverable). Ill-posed BC’s forced dtO.

39 - Singular mixed BC’s. (Recoverable). Ill-posed BC’s forceddtO.

40 - Singular PDE Jacobian.(Recoverable). Ill-posed P1)13 forced dt=0.

41 - SingularODE Jacobian.(Recoverable). Ill-posedODE forced dtO.

42 - Jacobiancoefficientof u~ changessign. (Recoverable). The linearizedproblem has a
singular solution, which forced dt=0.

43* - Too many Newton iterationsrequired. (Recoverable). The nonlinearequationscould
not be solved,which forced dt~0. The user’scomputationof the Jacobianvalues in
AF, B or D may be incorrect. Another causeof this problem could be insufficiently
accurate computation of the Jacobianvaluesor the valuesof a and f.

8. Time Discretization.
A one-step,implicit finite difference method is employed for the time discretizationof

(5.1 )-(5.3). The resulting nonlinearODE’s in spaceare then linearized,as are the BC’s and
the original ODE’s. The solution of the resulting systemof linear ODE’s in space,subject to
linear BC’s, with coupled linear algebraic equations.is accomplishedby Galerkin’s method,
usingB-splines,as describedin section 9.

An extrapolationscheme(see Appendix 2) is applied to the resultsof this one-stepfinite
difference method in time. This allows an extrapolationstep-sizeandorder monitor [411 to be
employedwhich dynamically changesboth the local step-sizeand order of the time-integration
schemeto satisfy the user’serror requestin a reasonablyoptimal fashion.

Although this outline of the solution processappearsto be inconsistentwith that given in
section 3, both outlinesproducethe samenumericalsolution. Spatial discretizationfollowed by
discretization of the resulting ODE’s in time gives the same mathematicalformulation as
discretizationin time followed by spatial discretization. For overview, the former outline is
conceptually simpler, however, for the derivation and implementationof the equations the
latter is preferable.

The time discretizationis parameterizedby a number 0 obeying 0 ( 0 ( I. For 0 =

this gives the very stable backward-Eulerscheme,0 = — gives the Crank-Nicholson scheme
2

[351.and 0 = 0 gives the rather unstableforward-Eulerscheme. The descriptionof a canonical
time-stepfollows. Let u0, v0 denotethe old, known solution at time t~. Assume that we want
to find the solution u, v at time t, and let 8 = f—to be the time-step. All time derivativesare

0 u -U0 V—V0then replacedby time differences,as with u~ __ _____ x x and v . ThisU
8 ‘ xt 8 8

reducesequations (5.1)-(5.3) to the following systemof nonlinear01)13’s in space,subject to
nonlinearBC’s, with a couplednonlinearsystemof equations

v—V0a( 0t+(l—0)t0, x, 0u+(l—0)u0, 0Ux+(l~0)U~, ~ ~ 0v+(l—0)v0, 8 )
8 ‘ 8

(8.la)

UU0 U.rU VV0f( 0i’+(l—0)t0, x, 0u+(l—0)u0, 0Ux+(I~0)U.~, 8 x, 0v+(l—0)v0. 88
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(8.lb)

u(t,L)—u0(r”,L) u((t,L)—U~?((0,L) . Ov+(l—O)v”, ~ 0 = 0
5 - 8 8

(8.lc)

, Ov+(l—O)v0, ) = 0
8

d( 9,±(I 9) t~ Ou ( t,~) +( I —O)u0 (10 ~ ). Ou~ ( t.~) -t-( I —9)u~( t0,~0 ).

(8.ld)

“—V0U(,,~O)~U0 ( ~0~9) u~( .~)~U~(b0,~) , #9v+( I ~9)~O, ) = 0,
8 ‘ 8

where ~ = O~+il~9)~o.

An iterative, quasi-Newton method is usedto solve (8.1). Let u~, v1 denote the point of
linearization, with u1 — u( r’, x), v~ — v( t-’ ), etc. Also, let (t, ~,(0). Finally, let ui0,

~ be the current iterative best estimatesof the solution u, v. The linear, quasi-Newtonequa-
tions for the corrections,w(x) andz, to U0 and V0. are then

ai~+~1Oa{wJ+Oa{wj~ +a,~
4, j~±~ =

(8.2a)

10+ ±oj;~ ±f~,—~!--±f/~,, + ~9f{ 2i±f>~-J

n[ w i~(zi
b[ +~ I~’Lu, W1 ±9bL,u Wix ±bL,~—f ± x j+~[obLz;±bL~-~--J= 0 (8.2b)

bfl +~ ~ Wi +ob,~,u~Wix±bL1~f +b~ ,~ LI+~IObLzI+b~,v~—I = 0 (8.2c)

______ Wix(~i) )1+
(8.2d)

0

2jd~z +d~t-~-J = 0.

The solution of (8.2) gives the correctionsw andz to u
0 and ~ which produce the next quasi-

Newton iteration u~~1 and v ~ Thus, (8.2) constitutesthe iterative schemefor solving (8.1).
Equations(8.2) havethe f~orm

0 0- 0

~ [a,;’w
1x±a;w1J =f2l+f(2)+~[a(3tw±a(4)w J ±~~g,~’+g,~

2)Jz
1 (8.

3a)
i—I 1.—i I—I
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~i(L)(r~Ln(LJ —

I—I

29 (8.3c)
I I’

[n~J n

I~(d,~i’WjxC~I)±d,]1Wj(~I))I = d,’~’±~d
1

4tz
1 (8.3d)

I~ [i—u
Theseequationsmay be simplified by setting

fly

= WO]+~ZpWip (8.4)
p—I

where w11 solves

(a
1 ~wox+a’2two)x= f; +f121+a131w

11x±a
41w

11 (8.5)

subjectto BC’s

(LI

a
1~ W~(L)+~IL)Wtlx(L) = y

(8.6)

and w solves

(a11tw~.+at2twp)x—g~1+g~2I+a(IIwp~+a(4Iwp (8.7)

subject to BC’s

aILIwp(L)+~IL)w (L) =

0ALIpx p

(8.8)

(R Iw(R)±aIR)w (R) — (RI

a p?~ px

Linear systemsof ODE’s, such as (8.5) and (8.7), subject to linear BC’s, such as (8.6)
and (8.8), may be solvedusingGalerkin’s method,asoutlined in section 9.

When the have been obtained from (8.5)-(8.6) and (8.7)-(8.8), the z may be com-
puted from the linearizedODE (8.3d), which is the systemof linear algebraicequations

~ d,,
41~ (d,~’ WIpx (~ ,)+d,]’w 1 =

J—I I

(8.9)

i—i I—i

for z. When (8.9) has beensolved for z, w may be obtainedfrom (8.4).

The computationof w and z from (8.4)-(8.9) results in a single iteration in the solution
of the nonlinearODE’s (8.1), which itself constitutesa single time-step.

9. SpatialDiscretization.
This section discussesthe implementationof Galerkin’s method,using B-splines,~orsolv-

ing systemsof linear ODE’s, subjectto linear BC’s. First the linear BC’s are put into a canoni-
cal form suitable for use by Galerkin’s method. Next, each BC is paired with one, and only
one, of the ODE’s, so that the Galerkin equationsmay be formulated. As a by-productof
these first two phases,a numberof error conditionsare detected. For example, too many or
too few BC’s may be detected. So may things like a BC on u’(L) when the O[)E for u is only
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of first order. Thus, the extra processingwhich (jalerkin’s method requiresalso gives a great
deal of usefuldebugging (error) information. Finally, the Galerkin equationsare formulated.

The ODE’s (8.5) and (8.7) havethe form

(a I ~ + a’21u) = I) +f’2 + a’11u +a4’ux x X x (9.1)

subject to BC’s

a Liu(L) ±~‘‘-u~(L) =

(9.2)
aIRu(R) ±~IRu,.R. =

Reduction of BC’s to Canonical Form.

This sectionshows how to reduce the arbitrary linear BC’s (9.2) to a canonical form suit-
able for use in Galerkin’s method. The linear BC’s havethe form, at x = L andx =

au +flux = (9.3)

For a scalar equation (nu = I) theseBC’s havethe form

aU +/3Ux = Y

which, dependingon whether/3 = 0 or not, may be written as either

UYD (/3=0)

or (9.4)

U~=AU±y,~yf (/3!=0),

where YD = -~-~ A = — -s-- and YM = ~ A generaliiationof this canonicalform for n~ = I to
a /3 /3

systemswith ~u > I is now presented.This reductionassumesthat each BC is for the purpose
of determiningone of either u or u~, but not both. For example,the “BC’s”

U(O)+Ux(O) =0

U(O)41x(O) =0,

which is a sloppy way to say u(O) = 0 = u~(0), cannot be dealtwith by the proposedgenerali-
zation,eventhough it is of the form (9.3).

Let aD and VD be the Dirichlet IiC’s, that is, those rows of a and v which have all
/3,, = 0. Let aM, ~M and VM be the complementary , mixed, equations,that is, those rows of
a, ~ and v which havesome/3,~ !=0.

Then aD will be an flDX flu matrix, where I ( ~D ~ n~. The Dirichlet BC’s have the

form
aDu = VD•

Let flu be the numberof u
1 which haveam1 !=0 for some i. Then we must have “luD ~

for otherwisethe Dirichlet BC’s will be overdetermined.
We may obtain a QR factorization[551of the form

QaDP = ( R IC)

where Q is an flDXflD orthogonal matrix, P is a ri~~ r~ permutation matrix, R is an flDXflD

upper triangularmatrix, andC is an flDX(flu — flu) matrix. Let
11D be the first ~D elementsof

~ u, anduE be the restof ~t u. We then have

(R C )Ptu = Qy~

and thus
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UD RIQyD~RICuE. (9.5)

This is the canonical form which will be assumedfor the I)irichlet BC’s.

The mixed BC’s have the form

aMy +PMUx = YM

where a~ and ~M are flMX n,, matrices, with 1 ~ ~M ( ri,
1. Let ~ be the number (If u1

which have/3Mij !=0 for some i. Then we must have ri,,~, ~ nq. for otherwisethe mixed BC’s

would be overdetermined. Preciselyas in the Dirichilet case,we may obtain a QR factorization
of the form

Q~M P = ( R I C).

Let UM be the first ~M elementsof ~t u and let u1~ be the rest of ~t u. Then

U~x R’ QVMRIQaMURICU.~x (9.6

This is the canonicalform which will be assumedfor the mixed BC’s.

The above BC forms. (9.5) and (9.6), havethe form

UD = VD+CDU

(97)

UMX = Au +VM +CM uX

wherethe appropriatecolumnsof CD, CM and A arezero.
The aboveform (9.7) generalizesthe standardform for linear BC’s when re,, = I to the

casewhere ~ > 1. It may not representthe most generalgeneralization,but it is sufficient f~or
all problems of which the author is aware,and then some.

BC Placement.

Galerkin’s method reduces(9.l)-(9.2) to a systemof linear algebraicequationsin the B-
sphine coefficientsfor the solution u, by making the error in (9. 1) orthogonalto each of the B-
sphine basis functions [421. Certain of these orthogonahity relations are then replaced, or
modified, by BC equations. A BC on u, at x = L affects the first orthogonality relation for the
ith ODE. Similarly, a BC on u at x = R afTects the last, N~kst, relation for the i”’ Oli~E
Galerkin’s method requires that certain BC’s be associatedwith (applied to) certain kinds of
differential equations. The restrictions (assumptions)made upon the relation between the
structureof the ODE’s and BC’s are listed below.

9.1) Any Dirichlet BC must be applied to an equationwith some U,x present. This rule simply
requires that the ODE to which a Dirichlet BC is applied be of order at least one. For
example, if the ODE is

} on (0,1),

with the BC u1 (0) = I, and in the Galerkin equations one of the equations for u~ is
replaced by that BC, the resulting Galerkin matrix will be singular (since there will be
only N—k—I equationsfor the N—k unknown B-splinecoefficientsfor u9.

9.2) Any mixed BC on u1~ must be applied to an O[)E with u1~ present. This is required by
the Galcrkin procedure,andappearsto be common senseas well.

9.3) It makesno difference where non-existent (inactive) BC’s are “applied” (associated),eg.
u2 above.

The above rules may be turned into a nice mathematicalproblem by letting Q,L be the
order of u1 in ODE i at x = L, and similarly for O,j’ at x = R. To be precise. Q,~L is the
valueof
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tim { The order of u~, in ODE i at x

where the order of u1 in ODE i means the order of the highest order derivative of u~ appearing
in ODE i at x. so that ODE’s like

xu~ = sin(x) on (0,1)

havethe properorder, namely 1, assignedat x = 0, insteadof zero order. If ii1 doesn’t appear
in ODE i, we simply set Q,~L = —I. Let jiLl be an fluX2 matrix with elements

JOif there is a Dirichlet BC for u, at x = L.
= V if thereis no I)irichlet BC for u, at x = L.

Ji if thereis a mixed BC for u, at x = L.
= 1—2 if thereis no BC for u1 at x = L.

with TIR) defined similarly for x = R. The previousrestrictions9.1-9.3 then becomethe prob-
lem of finding permutationarraysE~LI, E4’, E)~R) andE{f

t, each of length ~u’ so that

9.4) Max QILI > Tf< Similarly for x = R
~

~ O~2P~ > T,%. Similarly for x = R.

9.6) EhLflEL~~~ERflE{I?I.

Restriction 9.6 makessure that different BC’s aren’t applied to the sameODE, at the same
point.

Anothercondition is also added

9.7) For each i = I, - ,i~. the numberof times i appearsin the arraysE~LI, E)j’, E~R and
~ with oneof T,’’~t, T,~, T,1~1, or TjI not equal to —2, should be less than or equal
toMax(OjL), Q;RI)

Restriction 9.7 makessure that the number of active BC’s applied to each ODE equals the
order of that ODE, the numberof degreesof freedomintroducedby that ODE.

The permutationarraysEEL), E,~f-1, E~R(, and E~’ can easily be found usinga tree-back-
tracking algorithm [251. Once found, thesearraystell us which ODE haswhich BC’s associated
with it, and vice-versa.

An additional restriction is that

~Max (QLI, QIRI) — ~( The order of u~ ) =

I I

~Max (QjLI Q,~RI) — ~( The orderof ODE i ) =

I

~ The numberof active BC’s,
L.R

which simply saysthat the numberof degreesof freedom in the ODE system, whethercounted
by ODE or by ODE variable, must be the sameas the number of active BC’s at x = L and
x = R.

Theserestrictionsmean basically that there should be no transformationof the 01)13 sys-
tem which would lower the order of any u

1 in the ODE without introducing new ODE vari-
ables. For example,the ODE system

UI~ = 0

UI~+UIx = U2

has ~ order u1 = 2 !=4 = order ODE,, which violates the above restriction. The ODE
may easily be altered to read, however,
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U
1_

which has ~ order u1 = 2 !=3 = ~ order ( )I )L, which is better. Finally, it can be altered to

read

U?x =

UIx = U?

which has ~ order u~ = 2 = ~ order 01)13,.

It is possibleto haveBC’s which are really initial conditions,as in the problem

U1

U?x’01 on (0,1)

with BC’s

U1(O) = 0 = UIx(O)

u?(l) =0.

Ilowever, the problem

UI~ =0 on (0,1)

subject to UI(O) = 0 = Uix(O) cannotbe handleddirectly using the current BC placementalgo-
rithm.

Galerkin’s Method, using B-splines, for Linear Systemsof ODE’s.

This section shows how (jalerkin’s method, using B-splines, may be usedto solve linear
s’,’stems of ODE’s, of the form (8.5) and(8.7). subject to linear BC’s of the form (9.3).

Let the B-spline mesh ir be given, with fi elements,as describedin Appendix I We wish
to solve linear ODE systemsof the form

(aIu +a
2tu)x = (a131ux+a141u)+f.~j’±f’21 (9.8)

subject to linear BC’s of the form (9.3) at x = L and R. Let ( f’ g ) )f(x)g(x) dx he
L

the standardL, inner-product. The Galerkin equationsfor (9.8) are, after the usual integration
by parts [421,

—~[ a,jI)ujx+a,~2Iuj, Bpx )±( a,?’ujx+a,~Vuj. B~

(9.9)

a,~I)ujx +a,~2~u~ )B~ j~ = —( fi(II.Bpx ) +f,wB~ r+( f,’21’ B~

Thesefunctional equationsare now transformedinto linear algebraicequations. Let

flk
U

1 = ~ Yj+q~Hfl~Bq(X) j1, ‘‘ELI (9.10)
q—i

where the B~ are the B-spline basis functions (see Appendix I). This orderingof the B-sphine
coefficientsy results in an ifiterleaved structure, fiot a block structure. This ordering is chosen
to give a systemof linear algebraicequationswhich is banded,rather than block banded.

Aside from boundary terms(those termsinvolving only x = L or R) the Galerkin matrix
G is given by the equations:

~ a’ Bqx +a’
21B B ) +( at3tB +aI4IB B~ )1 y~I q q’ px y,’ qx ,.i q’ j J+ q—I)fl,, =

I~’ q—i
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(9.11)

‘
Tu fl—k

~ Gi+ip...i ~ j+q—I I fi, Yj+q—I ~ . i= I - . . . ri,, - p= I. . . n—k.
j—I q—I

Since p—q~ < k and Ii—j~ < ri~, we see that the hall-bandwidth of G is

fiul + (k—I) n~+l = kn,, andthe bandwidthof G is

2kfl,,—l . (9.12)

This bandedstorageschemefor G is quite efficient. This is best seenby noting that the total
number of non-zeroelementsin a row (If G is (2k—I )n

0. Thus, the relative overhead,over

just storing the non-zeroelementsof G, is 2k—I which is 0 for ~u = 1 and less than

2k—I for all ~u

The right-hand-side of the Cialerkin equations is b, which, aside from boundary terms, is
given by

We now need the boundary terms in (9.9). Thesecome in two flavors, mixed and un-
mixed. Let ML(j), j=l, . ,N& be the indices of u4, similarly for MR. Also, let C(ML
be the complementof ML, that is, thoseil, - ‘

1u which are not in the array ML, similarly
for C(ML). Einally, let r(i,j) i+(j—l ),i,~. The boundary terms8G for the Galerkin matrix
G are obtained from the equations

<‘(L) ( YjBIx(L)+Yj+flUB?x(L) ) +aj’(L)y~ ) +

~( a,~)4~ (L) ( ( A)I’- y,+C~j,’ ( YtBIx(L) ±YI+flB?biL) ) ) ) ±
I—I

ai~~(I(L)yML(l —

flk ~ ( a,j,’’(R ) ( YPII.PI,BPI ,(R) +Yrii piBpx(R ) ) + a,7~(R)Yri}.p~ ) ±
[ECiMR

NR fi

~( a,,~
11 (R) ( ~ ( Afy~11~,+C,~1’ ( yfIIP....I)BP.IX(R) +Ypiip1Bpx(R) ) ) ) ±

1—1 I—I

~ (R)Yriijijipi =

(9.14)

r fly’

8,711 ~ ( 5G,~y3 +bG,1.~ ~ ) + ~ ( ~( 8G,,y, +
8G,

1~flY/~fl )+8G, MLII IYML I —

j—I 1.—I

v~1 ~,,

j—I I—I



- 33 -

~Gr~i p1 r(MR 1
11.pIYrI1.pI

where ~ is the Kroneckerdelta function. The boundaryterms ~b for the right-hand-side b are
obtainedfrom the equations

8p.flk (R) ‘~a~’ (R )y%~ — ~ f/ ‘‘(L) (L )Y~J

(9.13)

With the above boundary terms (9.14) and (9.15) addedon, the Galerkin matrix C and
right-hand-sideb are ready to do a fully mixed problem, that is, one with no Dirichlet BC’s.
Let DILI(i), i1, . pjL, be the indices of u~,LI, similarly for DIR . Then the

equation DLIEI~LI (DILI(i))th Galerkin equation is replaced by the Dirichlet BC for U (L

i=l, ~ The E)~RI (DIR 1(i)) t(fi~k~l)fiuth Galerkin equation is replaced by the D!ri-

chlet BC equation for UDIR ,
1(R), i~ . p~ (RI This completes the ~~cmulation of the

Galerkin equations. The result is a systemof linear algebraicequationsof the form

Gy = h (926)

for the B-spline coefficients y (9.10) of the solution u of (9.8). The matrix G is

flu(fik)Xfiu(fik) with a band-widthof (2kfiu”’i). see(9.12). Thus, the system(9.16) ma~
be solved in roughly ~u(flk) (2k ~u’~ k ~u arithmetic operations [551, and the B-spline
Galerkin solution can be obtained quite efficiently.

The Galerkin system (9.16) is based on the computation of many integrals. These
integrals are computedwith Gauss-Legendrequadrature[421. If we let 0 be the minimum
order of all u, in the ODEsystem (9.8), then we wish to compute

J’B~OI(x)Bq(X) dx

exactly [421with an mq-point Gauss-Legendrequadraturerule. This is bestaccomplishedfor

0 = 0
mq = ~ if 0>0 (9.17)

Using sucha quadraturerule, the Galerkinsystem(9.16) may be formedin roughly

4 (flk)k
2fiu2lflq (9.18)

operations, while the right-hand-side b alone may be computedin roughly

2 (flk) knumq (9.19)

operations. If the LU factorizationof G and the right-hand-sideb are known, then the solution
y may be computed in roughly

(flk) ~u (3 k ~u2~ (9.20)

operations.
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Appendix I

B-sp1 i nes
The way in which the approximate numerical solution is to be representedis a very

important decision. The choice of representation affects the entire solution process.
Specifically, we would like to choosea spaceof functions, out of which we will try to obtain the
elementclosestto the solution. This spaceshouldhaveseveral nice properties,including being
(I ) easyto work with and (2) capableof approximatingthe solution accurately.

Such a representationexists - expansion in B-sphinesof order k [2,3,121. This is a
method for representingfunctions by piecewisepolynomials,that is, polynomialsof degreek—I
or less overeachsub-intervalof a meshor grid. Ilere the integer k is any number k ~ 2 the
userdesires. The piecewisepolynomial representationis required to satisfy certain continuity
restrictions at the end points of each mesh sub-interval. Specihically, let ~ = (XI , •

where L=x~ =x, ( ( XN=R, be a grid on the interval (L,R). Let m, be the multi-
plicity of x,, or the numberof times x, appearsin the list ir. The spaceof B-splinesof order k
definedon the meshiT is definedto be the collection of all functionsf
(All) which are polynomialsof degree< k on each interval (x, ,x,~1 ) for i=l N—I,

k—I—rn k I m
(A 1.2) for which d ‘f(x,) / dx — — ‘ existsand is continuousat each x,, for i= I N.

when viewedas a function definedonly on [L,RI, and

(AI.3) for which f 0 outside [L,RI.
The multiplicity m, of a point x, is restricted to be in the range I ( m, ( k. For m,=l

we havedk
2f/dxA2 continuousat x,. This is the mostcontinuity which can be imposedat x,

without making f a polynomial of degree k—I on (x, . X;~

1). For m, = k the condition that
d’f/ dx—i be continuousis interpretedto mean that f is continuousfrom the right (but not
necessarilyfrom the left) at x = x,, for x, < R, andcontinuousfrom the left if x, = R. This
meansthat B-splinesare continuousat the end points of the meshwhen viewed as functions
defined only on [L,RI. This collection of functions is denotedby’ Bffk. These Bffk spaces
have rather nice approximation properties, as summedup by deBoor [21, in the case when

= k = inN.

Theorem 1

Let f be any function with flIll through fIkI continuouson [L,RI, where f’J’ denotes
the Jth derivative of f. Let h = Max X,+I —x, I be the largest mesh interval length.

Then there is an elementg of B~k so that

for 0 ( j ~ k, where C(k,f) representsa constantwhich dependsonly upon k and f. but
not h.

That is, as h—~0, the error in the best B-spline approximation to f goes to zero like hA:
the error in its derivativebehaveslike hkK etc.

Note that this theorem makes no assumptionabout the relative spacing of the mesh
points of n in order to get hk error. In many problems,the ability to grade the meshwith B-
splinesand still get hA error is a decidedadvantage.

In practice, k is usually taken to be 4, 6, 8 or even 10. depending on what the function f
looks like and how much accuracyis desired. k is usually, but not always, taken to be even
due to the rather naturalway in which such splinesariseand their smoothing propertieswhen
used to approximatefunctions described by discrete data [21. Typically, the more accuracy
desired, the larger the value of k should be. For example, if k=8 and the mesh length h is
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halved, then Theorem I indicatesthat the error shoulddecreaseby a factor of 2~ = 256. I low-
ever, the work needed to solve a problem using POST is 0(Nkb. Thus, a k=8 solution will
cost 8 timesas much as a k=4 solution for the samemesh. I lence, the optimal k results from
minimizing 0(Nkk1), where Nk is the numberof meshpoints neededto solve the problem to
the desiredaccuracyusing a k order B-sphine. This optimization is highly problemdependent.

A computationally convenientbasis exists for the spacesB~A. The dimensionof Bmk is
N—kand the basisconsistsof elementsB,(x), i=l N—k. A complete description of the
B, is given in [121 and [31.Briefly, when the multiplicities of the first and last meshpoints are
both k, so that

= = Xk

and

XNk+I = = XN

then the main propertiesof the B,(x) follow

(A 1.4) Each B, is non-zero only on lx, ,X,+kl and is identically zero elsewhere,as well as at
x,

1 and X,+*+I XN, even if they are in [x,. ,X,+II.

(AlS) The sum B1(x)+ • +B~(x) is identically one.

(A 1.6) EachB, obeys0 ( B,(x) ~ I everywhere and possessesonly one maximum.

The convergenceresult of Theorem I is independentof the multiplicities in, of the inte-
rior points x, ( k < i ~ N—k ) of the mesh. Usually, for smooth functionsf, m,=l is taken
for all theseinterior ( that is, strictly betweenL andR ) mesh points.

The end points of the mesh typically have multiplicity k since the function f usually has
f(L) !=0 and f(R) !=0, and the elementsof B~k cannot be non-zero at L and R, unless
in1 = k = inN becauseof (A 1.2) and (A 1.3). ln fact, relations(Al .2)-(A1.5) show that the only
B, which are not zero at L and R are B1 andBN..A, and thesevaluesare simply B1(L) = I and
BNk(R) = I.

If the function f has a discontinuity in its }th derivative, at x,, then in, = k—I is chosen
because this allows the elements of BITA to have the same behavior. If a smaller multiplicity
werechosen, the 1th derivative of all the elements of B~k would be continuousat x,, and the
best fit to f from B~k would not be very good at x,.

Another important propertyof B-sphinesis their numericalstability or coriditiori. Since any
N-k

B-spline f is of the form f= ~a, B, and each B, obeys0 ( B, (I we see that if 11W is

small comparedwith fail, then many significant digits are lost when computing f from
a1 , a in floating-point arithmetic [541.Specifically,

d ( Log1o(Hali/lf~a, BIH) (Al.?)
I—i

decimal digits are lost, due to cancellation,in evaluatingf. In [21de Boor showsthat

Ha,B,H =QUail (Al.8)
I—I

where Ck is a constantdependingorily upon k, and therefore

d =Log11I(C~7¼.

In particular, he shows for a uniform mesh, one where all the mesh intervals havethe same
length, that

Ck 10k/5, (Al.9)

Thus, when evaluatinga B-spline defined on a uniform, or nearly uniform, mesh, we would



AI-3

expect to lose no more than about k/S decimal digits. This is a very satisfactory result since it

indicatesthat, at least for uniform meshes,the conditioningof the B-spline basisis independent
of the size of the mesh.
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Extrapolation.

The problem treated in [51and [26271 is the numericalsolution of the canonical form
ODE initial value problem

dx = f(t, x) a =i’

dt

(A2.l)

x(a) =

where f(t, x) is some smooth vector-valuedfunction of t and x. A brief outline of the ideas
developedin thosepapersfollows.

There are many basic differencingschemesfor solving (A2.l), such as Gragg’s modified
mid-point rule [26,271, backwards-Eulermethods[381 and Crank-Nicholson[18,351. Most of
these methods have the property [481that if they take N time-stepsto go from t1~ to ~I and
result in an approximationto x(t1) which we shall denoteby T(h) where h = (t1—t0)/N, then

T(h) = T + ~ (A2.2)
j—I

where T = x(t1), y is a positive constantdependingon the basic difference schemeused,and
the T1 are unknown constantvectors independentof h. For Gragg’s modified mid-point rule
or Crank-Nicholsony = 2 and for backwards-Eulermethods-y = I.

Let a sequenceof h’s be definedby

= h1/N,, i = 1, 2. 3, . (A2.3)

where h1) = ‘I~() and the N, form a monotone increasing sequenceof positive integers.
Buhirsch and Stoer showed in [41 that given an operatorT(h) satisfying (A2.2), and such a
sequenceh,, then the value at h=0 of the polynomial of degreem which interpolatesT(h,) for
i=0, ,m, is given by T~ which is determinedfrom the recursion

= T(h,) for 0 = =in

(A2.4)

= TkI + (T~t.~ —T&...I)/{(hi/hi+k)V ~1}

for 0=i=in—k and I =k~m.If the T~ are organizedinto a lozengeof the form

T(h0) =

T(h )= TJ

T(h2) = T4
1 T~I

T(h
3) = T~ ~‘ T,~ T~ V

1
T(h

4) = -~‘~ ~l j

3

T(h
5) = T~

then (A2.4) expresseseachelementof the kth column (k >0) in terms of its two neighborsin
column k—i. A similar result is establishedfor interpolationby rational functions [41.

It is also possible to estimate the error in eachelementof the lozenge [61. In fact, [61
shows that for sufficiently small h11,
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T~ —T~ L + (h,//1,+A
1+I)~— I JTVI —1W (\2. 3)

and we can estimatethe error E~ = ITL — T in T~ . We also know from [61that for sutlicientlv
small h,

1,

= hr~dA(h, • • •

where the dk are constantvectors, y is the order oh the basic processbeing extrapolatedand /3
is a positive constant. When extrapolating (iragg’s modihied mid-point rule or (rank-
Nicholson, y = 2 and /3 = I. When extrapolatinga Backwards-Itiler time differencing rocess~
y = 1 = /3. Thus, we can both estimatethe accuracyof each element in the lozenge and icil
how rapidly each column in the lozengeis converging.

In ( A2.4) in is called the level oh extrapolation,while from (A 2.3) we see that lie ordcr
in column k. is ( k +1 )y. Thus, by extrapolatingthe results(if a basicordinary differential equa-
tion solver. a processof arbitrarily high order can be obtained. The value h = ,‘1 — ,‘ IS
referred to as the time-step while the h, are called sub-steps. Lxtrapolation approximatesthe
x ( t1) valuesaccurately,but doesnot accuratelyapproximatex ( t+rih,) for 0< rz <N.
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Wish-List

This section describesseveral improvementswhich will, could or may be made in POST.
The improvementsrange from better human engineering (easieruse) to making the algorithm
moreefficient andextending it to solve more generalproblems.

Better Nonlinear Equation Solver

The tirst major improvementwhich will be made is to use a better nonlinearequation
solver. The current schemere-computesthe Jacobianmatrix (the partials Oa,/0u1, etc.) at
every time-step. This is quite unnecessaryand rather expensive,as a comparisonof the opera-
tion counts (9.18)-(9.20)shows.

For linear problems,the userwill be able to say that the problem is linear and that the
coefficients of u, Ux, u~, u ~,, v, v, are all functions of x alone (no dependenceon t). In this
case POST should run substantially faster becausethe Jacobianneedonly be computed once
during the entire solution process.

For nonlinear problems,a schemewill be implementedfor keepingan “old” value of the
Jacobianover as many time-stepsas the Jacobiancan provide an effective quasi-Newtonitera-
tive solution of the nonlinear equations. This schemewill use the fact that, in general, the
convergenceof a quasi-Newton method with an “out-of-date” (inaccurate)Jacobian is linear
rather than quadratic. The possible run-time improvement using such a schemeis krz~, the
ratio of the cost of computingthe Jacobian(9.18) to the cost of just computingthe right-hand-
side (9.19).

Numerical Jacobians

Another possible improvement would be the automatic numerical computation of the
Jacobianmatrix from the valuesof a and f. This is not a high-priority item for three reasons.
The first is that it is usually an easymatterfor the user to compute,by hand, the necessarypar-
tial derivatives. The secondreasonis that the partial derivativegeneratorPDGEN [521 may be
used to automaticallycompute the Jacobianwhen it is too difficult to do by hand. The third
reason is that numericaldifferentiation is a “black-art” rather than a science,and its use could
compromisethe robustnessof POST. Anyone feeling that numericalJacobiansare a necessity
shouldcontactthe author, but be ready for an argument.

Special Entry for PDE-BC Problems

Another entry point can be made in POST to remove the 01)13 variable parametersfrom
the calls to Posts, AF, B and Handle. This would make the use of 1.~OST to solve P1)13-BC
problemsa little easier to explain andaccomplish. Once the packagehas firmed-up a bit, such
an overlay will undoubtedlybe provided.

More General BC’s

Problemswhere the BC’s involve giving both u and Ux at either L or R cannot be han-
dled currently, except by either making Ux(t, x) a new PDE variable (which increasesthe cost
a lot), or by making u ( t, L) (or u ( t, R)) an 01)13 variable (which increasesthe cost a little).
Such BC’s may ariseoccasionallyand it would be wise to handle them cleanly and efficiently.
However, most problemsof this type are ill-posed [351,so implementationof this featureis not
a high-priority item.
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Non-local Terms in the PDE

A radical improvement in the capabilitiesoh~ I~( )ST woLild be to allow n(In—lIIcal terms in
the P1)13 (Al2). This would allow integro—difierential equations to he solved. Theoretically.
such problemscan currently be solved using the 01)13 facility of POST, however, the cost Is

prohibitive. To do it right would require that the a and f terms in the P1)13 also haveparame-
ters U ( t, ~( t) ), seC (5.4). The BC’s and ( )l)I’s have such non-local terms and it would he
mathematicallypretty if the AF term could also. I lowever, the Jacobianmatrix, instead oF
being banded, would be full and densein general. This would significantly increasethe running
time for such problems, but also allow solution of a much broader range of problems. Non-
local PDE terms can be addedfairly easily to POST, but their implementationawaits sufficient
userdemand.

Other Spatial Discretization Techniques

B-splines are used in the current implementationdue to their excellent approximatlOfl

properties(see Appendix I ) and the fact that thereis a local basis for them which y elds banded
Jacobians. This choice is made for generalrobustness,reliability an.d efficiency. I lowe\er. for
particular problems there may be other (non-local) approximationspaceswhich, although they
yield dense matrices,are very efficient becausevery few basis functions are neededto accu-
rately approximatethe solution. It is conceivable that a package allowing the user to specif~ the
basisfunctions,and the way to computethe (jalerkin integrals,could be createdand evenmade
efficient. Such a project awaits sufficient user demand.

Banded PDE Systems

There are situations where the P1)13’s themselves are banded, that is, a, and I ink
depend on u

1 for j “near” i. Advantage can be taken of this structure to decrease the amount
of storage, and run-time. needed by POST. This is a low-priority item.

More Structure in the PDE

A n equationof the form [511

= Q(Ux)~

is really of the form (2.1 )-(2.2) since it is equivalent to

P’(u)u, = Q(Ux)x.

Ilowever, it may be quite awkward to hind P’ and P” for use in POST. The form of the 1)1)1:
could be taken to be

a+bx +c,+ d,~=0

to accommodate such problems. Ilowever, the calling sequence to the new “A 13”, would he
horrendous, having 14 more arguments! Such a grotesquerie will be produced only Linder ~rcat
pressure.

Collocation Methods

Collocation-Least-Squaresmethods[7.151, using B-splines, could be used to soRe a l’l)L

s~stemof the form

x, U, ~ Uxt. U~. U~, ~ vi = f).

Such techniquesforce the P1)13 to hold at a finite number of points in each B-spline mesh inter-
~al. There are several advantages to such techniques. First, they would permit solution I)f
more general problems than that allowed by the self-adjoint form (2.1). The code would also
be simpler and easier to use, due to the reducednLinlber of arguments. Finally. for a gi\ en
spline mesh, collocation methods are about twice as fast as Galerkin’s method. I io~\.e\er. for
some second order problems where the spatial derivatives U of the solution grow like a’ for



A3-3

someconstanta, the error for collocation is a factor of a greaterthan that for Galerkin. This
happensbecausethe divergence-formallows one level of spatial differentiation to be done
analytically, using integrationby parts (seesection9). Thus, for problemswhere the solution is
“kinky”, collocation may be much more inaccuratethan Galerkin, for the sameB-spline mesh.
This would seriouslycompromisethe robustnessof POST. Should demandarise for such a col-
location package(should someonefind an interesting PDEwhich is not in divergence-form),it
could be producedquite easily from the codefor the existingPOST package.


