Computing Science Technical Report #53

Numerical Solution of Time-Varying Partial Differential
Equations in One Space Variable

N. L. Schryer

April 15, 1977

Numerical Solution of Time-Varying Partial Differential
Equations in One Space Variable.

N. L. Schryer

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

An algorithm is presented for the numerical solution of time-varying par-
tial differential equations in one space dimension. The technique used is a
combination of

Spatial discretization by Galerkin's method, using B-splines, and

Solution in time by a variable order, variable time-step extrapolation pro-
cedure.

The algorithm is capable of dealing with coupled systems of partial differential
equations, those depending on both time and space, and ordinary differential
equations, those depending only on time. Also, non-local conditions may be
imposed on the solution, such as making it periodic in space, or specifying its
spatial integral as a known function of time.

A preliminary implementation of the algorithm in portable FORTRAN,
called POST (Partial and Ordinary differential equations in Space and Time),
is described. The package is especially easy to use since only the spatial mesh,
and the accuracy desired in the solution of the equations in time, need to be
specified. The time evolution is then automatically carried out to achieve the
desired accuracy at the least possible cost. A user's guide to POST is given
along with several examples.

September 19, 1976

Numerical Solution of Time-Varying Partial Differential
Equations in One Space Variable.

N. L. Schryer

Bell Laboratories
Murray Hill, New Jersey 07974

1. Introduction.

Many applications require the solution of time-varying partial differential equations
(PDE’s) in one space variable. Typically these equations are sufficiently complex that their
solution must be carried out numerically. In the past, this effort has required the collaboration
of the person(s) who formulated the PDE problem with numerical analysts and mathematicians.
This interaction, while fun and interesting, is exceedingly costly.

This paper describes the preliminary release of a package of portable FORTRAN software,
called POST (Partial and Ordinary differential equations in Space and Time), for solving sys-
tems of PDE’s in one spatial variable and time. A subsequent paper will describe the com-
pleted package, which will hopefully benefit from user comments based on experience with the
current package. Using POST, the: formulator of a PDE may easily and personally solve the
PDE numerically. POST allows for terms of the form u. u,, u,, u,, u,., u,, in the PDE’s,
and u, u,, u,, u,, in the boundary conditions (BC's), where u is a vector of PDE variables.
and u, denotes du/dx, etc. The package also allows for ordinary differential equations (ODE’s)
in time to be coupled to the PDE’s and the boundary conditions. Furthermore, it is possible
for non-local statements_to be made about the solution, such as forcing it to be periodic or
making its integral, say fu(t‘x)dx, be a known function of time.

Section 2 describes the class of PDE problems treated. Section 3 discusses briefly the
numerical method used to solve the PDE’s (Galerkin's method in space, using B-splines. and a
variable order, variable time-step extrapolated backward difference procedure in time). Section
4 discusses several simple applications of POST. Section S5 discusses the mechanism which
allows for non-local statements to be made about the solution, and also allows for the coupling
of ODE’s in time. Section 6 discusses several examples where POST is used to solve PDE-
ODE combinations and handle periodic boundary conditions.

Section 7 gives a list of error states and problems which may arise when using POST, and
what the common causes of such difficuities are. Sections 8 and 9 discuss the algorithm used
by POST in considerable detail. Appendix | gives a brief tutorial on B-splines. Appendix 2
gives a brief tutorial on extrapolation. Appendix 3 discusses improvements which could be
made, and those which will be made, in POST.

Several other FORTRAN software packages have recently become available for solving
PDE’s in one spatial variable [45,46]. All of the these packages assume that the PDE has the
form

u, =f(+, x,u,u, (Du),),

where D{(¢, x.u) is a diffusion coefficient. with boundary conditions of the form
u=alr)

or
alru) +B8(ruu, = y(ru).

While this type of formulation covers a very wide range of physically interesting problems, it

S

does not cover problems with u,, or u,,, terms [51], nor does it deal with non-local statements
such as periodic boundary conditions [31]. Finally, the above formulation does not allow for
the coupling of ODE's in time with the PDE’s in space and time [1,39,56].

2. Statement of the PDE-BC Probiem.

The general PDE-BC form that can be solved with the approach used in POST is given by
the following equations, where u is a vector of PDE variables of length n,. The full PDE-BC-
ODE form is described in section 5. The PDE’s are assumed to be in semi-linear, divergence-
form

alt, x,u, u,,u,u,), =fr, x,u, u,u,u,), (2.1

where a and f are vector-valued functions of their arguments, for L < x < R. It is required
that the length of a and f be equal to n,, the number of PDE variables. The boundary condi-
tions are assumed to have the form

b, (t,u(e, L), u (¢,L), u,(¢,L), u,(t,L)) =0
(2.2)
bg (¢, u(£,R), u (¢,R), u,(t,R), u,(t,R)) =0,

where b; and by are vector valued functions, of length n,, of their arguments. Any com-
ponent of the BC vectors b; or bz which is identically zero is treated as an inactive BC. If each
of the PDE’s is second order in space, then each of the BC’s will have to be active. If any of
the PDE’s are of order less than 2 in space, some of the BC’s must accordingly be inactive.
Initial conditions (IC's) u(0,x) must be supplied, but need not satisfy the BC’s (2.2).

A classical example of the above form (with n,=1) is the heat equation [35]
u = u, on [0,1]
subject to boundary conditions
u(t,0) =0 and u(r,1) =1
with initial conditions
u(0,x) = 0.
Note that these initial conditions do not satisfy the BC's. For this equation we have
a=u, and f =u,
with
by = u(t,0) and bg = u(t,1)-1

Note that the form of (2.1)-(2.2) encompasses both parabolic (elliptic) and hyperbolic
problems. It also encompasses PDE’s which have no solution, such as

ul+ul =-1

over the real field.

3. General Method of Solution.

Let the solution u(¢,x), for a given instant in time, be approximated by a B-spline {2,3]
of order k on a mesh X(1) < - -+ £ X(NX), see Appendix 1. That is, each component of the
solution will be approximated by a piecewise polynomial function of degree less than k, with
k—2 continuous derivatives, where k 2 2 is any integer the user desires. If we set
h = max|X(i+1) — X(i)|, then the error max| u,(¢+,x) — &,(¢,x) | is O(h*) [3] for some B-

I X
spline &;. Since k may be taken to be any integer =2, this gives a very powerful technique for
approximating the solution u(z,x) in space. We can use the Rayleigh-Ritz-Galerkin (R-R-G)

-3

method [50] to essentially find the projection of the solution of the PDE onto the space of B-
splines we have selected. This reduces the PDE’s in space and time to ODE’s in tume
(27.39.50] for the coefficients U, (¢) in the expansion

u(t.x) =Y U, ()B;(x) 3.0
J

where the B,(x) are the B-spline basis functions.

Thus, after the spatial discretization, only ODE’s in time remain to be solved. Since these
ODE’s are known to be, in general, "stiff" [13,14], an implicit differencing scheme must be
used to solve them. This virtually requires that the partial derivatives of the a and f in (2.1),
and the b, and bg in (2.2), with respect to their arguments be known, either analytically or
numerically.

The next step in the solution process is the solution of these time-varying ODE’s. tlere
we assume that some basic one-step ODE solver is available. For example, a backwards-Euler
or Crank-Nicholson scheme [35], or an exponentially-fitted technique (28], or even an explicit
method such as Gragg's modified mid-point rule [27,28], could be used.

All of the above techniques, and many others, have the property that for a given time-
step & they produce an approximate solution which is accurate to 0(87), where typically y is |
or 2. Moreover, if the equations are solved using time-steps of & and 8/2, the results of these
two computations can be combined using extrapolation to the limit [5,27] to obtain a result
which is accurate to O(8%Y). This process can be repeated indefinitely, with the result that a
basic process of accuracy 8” can be used to generate a sequence of processes of accuracy O(87),
o), -, 08",

A step-size and order manitor is available [40,41} for carrying out this extrapolation pro-
cess and automatically deciding what time-step 8 and order Py should be used, when given the
accuracy desired in the solution. Thus, the user need only specify how accurately the solution
in time is to be computed, and the time integration then proceeds automatically, with no need
for the user to worry about choosing 8, or whether the numerical solution is accurate enough.

The algorithm for solving such PDE’s then consists of 3 steps:
1) Discretize the equations in space using R-R-G with B-splines.
2) Produce a one-step method for solving the resulting ODE’s.
3) Feed that one-step process to the extrapolation step-size and order monitor.

4. Software for the PDE-BC Problem.

The algorithm outlined in section 3 and described in detail in sections 8 and 9. has been
implemented in EFL {29], a Ratfor-[32]-like FORTRAN preprocessor language of considerable
elegance and power. This section is a brief user's manual for this software package called POST
(Partial and Ordinary differential equations in Space and Time). Because POST is implemented
in EFL, a FORTRAN preprocessor, programs written in FORTRAN, Ratfor, EFL or other
FORTRAN preprocessing languages may be used to drive and communicate with POST.

It should be noted that the current, preliminary implementation is still evolving (see
Appendix 3), and user’s complaints, comments and suggestions are encouraged before the
package is firmed-up (petrified) for release.

The outer layer of the POST package is called Posts and is invoked by

Call Posts(U,nu.k.X,nx,*,*,
tstart,tstop.dt,
AF.B,*.,*,
errpar,
Handle)

where a * represents an argument (described in Section 6) for dealing with the coupling of
ODE’s in time to the PDE-BC formulation of (2.1)-(2.2). The input to Posts is

-4 .

U - The B-spline coefficients (3.1) for the initiai s of the PDE variables u.
Ui, j), for i=1, - - - nx-k, are the coefficients 4y, j=1, -+ nu.

nu - The number n, of PDE variables u. ’

k - The B-spline order to be used. k 2 2 is necessary.

X - The B-spline mesh to be used. The multiplicity of X(1) and X(nx) must be k.

nx - The length of the mesh array X.

tstart - Start integration at time tstart.

tstop - Stop integration at time tstop. tstop should be a variable, not a constant, in

the program calling Posts, see output description.

dt - The initial choice for the time-step. The performance of Posts is substantially
independent of the initial value of dt chosen. It is sufficient that dt merely be
within several orders of magnitude of being "correct”. The value of dt will
automatically be adjusted by Posts to obtain the solution to the desired accu-
racy at the least possible cost. Thus, dt should be a variable, not a constant,
in the user’s calling program.

AF - A subroutine for specifying the a and f terms in the PDE. AF must be
declared External in the user’s calling program. This user-supplied subpro-
gram will be described later.

B - A subroutine for specifying the boundary conditions b. B must be declared
External in the user’s calling program. This user-supplied subprogram will be
described later.

A Real vector of length 2 for determining the error desired (to be allowed) in
the solution of the equations in time. For the i component of the PDE
solution u, the error at each time-step in the time integration will be at most

errpar

errpar(1) *{|u,|| +errpar(2)
where

Hull = Max |u,(t,x)].
(L.R)
Thus, errpar(1)=0 gives the solution accurate to an absolute error of

errpar(2), and errpar(2) =0 gives the solution accurate to a relative error of
errpar(1).

Handle - A user-supplied subroutine which will be cailed by Posts at the end of each
time-step. Handle must be declared External in the user’s calling program.
This subprogram will be described later.

The output from Posts is

U - The B-spline coefficients for the PDE solution u at time tstop.

tstop - May be altered by user-supplied subroutine Handle. if an error state exists on
return (see section 7), tstop is set to the last instant in time when the solution
was known accurately. Thus, tstop should be a variable, not a constant, in the
user’s call to Post.

dt - Final value of the "optimal" time-step.

The amount of scratch space used on the dynamic stack of the PORT library [23] is, neglecting
lower order terms,

n, (nx—k)[3k n, + 18]
Real words (storage units).

The user-supplied subroutines AF and B, which define the PDE-BC problem to be solved,
are now described. When Posts needs to compute a and f, it will

Call AF(t.,Xe.nxe U Ux, Ut Uxt, nu,*, > *,
A AU, AUx AUt ,AUx 1t ,* *,
F.FU,FUx,FUt,FUxt,*,*)

where a * represents an ODE argument described in section 6. The input to AF is

t - The current value of time.

Xe - A list of points where a and f are (o be evaluated. This Xe is not the B-spline
mesh X.

nxe - The length of Xe.

] - The values of u at the Xe(j). U(ij) = u(tXe(i)). i=I, - nxe and
Jj=1,--- nu.

Ux - The values of u, at the Xe(/), stored as above.

Ut - The values of u, at the Xe(/), stored as above.

Uxt - The values of u,, at the Xe(/), stored as above.

nu - The number n, of PDE variables u.

A - An array set to zero, see below for output values.

AU - An array set to zero, see below for output values.

AUx - An array set to zero, see below for output values.

AUt - An array set to zero, see below for output values.

AUxt - An array set to zero, see below for output values.

F - An array set to zero, see below for output values.
FU - An array set to zero, see below for output values.
FUx - An array set to zero, see below for output values.
FUt - An array set to zero, see below for output values.
FUxt - An array set to zero, see below for output values.

AF must return as output

A - The value of a at the Xe(i). A(ij) = a;(t,Xe(i)), for i=l, -+ nxe and
j=l,+ -, nu.

AU - The partial derivatives of a with respect to u at the Xe(i). AU(ix.ij)} =
8a,/du; (t, Xelix)), for ix=1,- - nxeandij=1, - nu

AUx - The partial derivatives of a with respect to u, at the Xe(/), as above.

AUt - The partial derivatives of a with respect to u, at the Xe(i), as above.

AUxt - The partial derivatives of a with respect to u,, at the Xe(/), as above.

F - The value of f at-the Xe(i). F(ij) = F;(t,Xe()), for i=1 -+ nxe and
j=1,--- nu

FU - The partial derivatives of f with respect to u at the Xe(i). FU(ix,i.j) =
af./9u; (1, Xe(ix)), for ix=1, - nxe and i, j=1, - - - nu.

FUx - The partial derivatives of f with respect to u, at the Xe(/), as above.

FUt - The partial derivatives of f with respect to u, at the Xe(/i), as above.

FUxt - The partial derivatives of f with respect to u,, at the Xe(i), as above.
When Posts needs the boundary conditions it will

Call B(t,L,R,U,Ux, Ut Uxt,nu,*, >, >,
B,BU,BUx,BUt ,BUxt,*.*)

-6 -

where a * represents an ODE argument described in section 6. The inputto B is

Uxt

nu
B

BU
BUx
BUt
BUxt

The current value of time.

The left-hand end-point of the spatial domain.

The right-hand end-point of the spatial domain.

UG, 1) = u(tL) for j=1, -+ nu. UG2) = 4 (tR) for i=1 - nu

Ux(i,1) is the value of u, (r,L), as above. Ux(i,2) is the value of u, (¢, R),
as above.

Ut(i,1) is the value of u,(¢r,L), as above. Ut(i.2) is the value of u,(¢,R), as
above.

Uxt(i,1) is the value of wu,(r,L), as above. Uxt(i2) is the value of
u,(t,R), as above.

The number n, of PDE variables u.

An array set to zero, see below for output values.
An array set to zero, see below for output values.
An array set to zero, see below for output values.
An array set to zero, see below for output values.
An array set to zero, see below for output values.

B must return as output

B
BU
BUx

BUt

BUxt

B(i,1) = b, and B(i,2) = bg;, i=1, -, nu

BU(Gi.j,1) = 8b;,/8u;(t,L) and BU(i,j,2) = dbg,/du;(L,R), i j=1, - nu
BUx(ij.1) = 9b,/8u,(tL) and BUx(ij2) = dbg,/u;, (LR),
i =1, nu

BUt(ij.1) = db,/9u,(tL) and BUWj2) = 8bg/du;(LR),
i.j=l. -, nu.

BUxt(i,j,1) = 8b,/8u,(tl) and BUxt(ij2) = 9bg,/Bu (LR),
ij=l, -+ nu.

The user-supplied output and control subroutine Handle is now described. At the end of each
time-step, Posts will ’

Call Handle(tO,UO,*,t1 Ul,* nu,nxmk,* k,X,nx,

dt,tstop)

so that the user may look at, print out, plot, fondle, or do whatever is desired with the solution.
If the output at the end of each time-step is not desired, and only the solution at time tstop is
needed. the "Return-End" Handle subroutine PostH may be used. The input to Handle is

t0
uo
tl
Ul

nu
nxmk

Time at the beginning of the time-step just completed.
PDE solution u at time t0 is given by B-spline coefficients UO.
Time at the end of the time-step just completed.

PDE solution u at time tl is given by B-spline coefficients Ul. If t0 = tl,
then a restart is in progress and the values in Ul are meaningless.

The number n, of PDE variables u.

nxmk=nx-k is provided so that U0 and Ul may be dimensioned to be
UO(nxmk,nuw) and Ul(nxmk,nu)

k - The B-spline order.

X - The B-spline mesh.

nx - The length of the mesh X.

dt - The current "optimal” value of dt.
tstop - The current final value for time.

The output from Handle is

tl - May be altered by the user.
Ul - May be altered by the user.
dt - May be altered by the user.

tstop - May be altered by the user.

The Double Precision version of Posts is called Dposts. The calling sequence for Dposts is pre-
cisely the same as that for Posts, with all floating-point arguments Double Precision. except
errpar, which remains Real. The amount of scratch space used by Dposts on the dynamic stack
of the PORT library [23] is, neglecting lower order terms,

", (nx—k)’3k n, + l6]
Double Precision words (storage units).

The examples given below, and in section 6, are intended to both illustrate the use of
POST and provide prototypes for a prospective user. Anyone contemplating using POST would
be well advised to pick an example program, which invokes those capabilities of POST the
intended problem will require, and keypunch it (or obtain a copy of the example code from the
author). After running the example, and confirming the correctness of the program, the AF
and BC subroutines specifying the PDE-BC may simply be altered to solve the user’s problem.
This progression makes it much more likely that the user will easily produce a correct program
unit for the problem at hand.

Example 1.
As a simple example of the use of Posts, consider solving the scalar heat equation
u = u,+g(t,x) on (0.1) (4.1)

where the source term g(¢,x) is chosen (g = (x—t*)e*) so that the solution is a known func-
tion, u(t.x) = e*. The boundary conditions are then taken to be

u(t,0) =1
(4.2)
ule,l) =¢'
with initial conditions
u(0,x) = 1. (4.3)

The following program unit, written in Ratfor [32], solves (4.1)-(4.3) using Posts, with a
cubic B-spline (k = 4) over a spatial mesh consisting of 4 equally spaced, distinct points on
(0,1), with the time evolution carried out to 1072 relative accuracy. The main program uses
several PORT [23] library subprograms. The first is the utility subprogram Umb for making
uniformly spaced B-spline meshes. The second is the Setr subroutine for setting an array to a
given Real constant. Setr is used to provide the constant IC’s (4.3) via the B-spline coefficients
(3.1), taking advantage of the fact that if all the B-spline coefficients are equal to a constant c,
then the B-spline itself is identically equal to that constant ¢ (see Appendix 1). Had the IC’s
(4.3) been non-constant, other PORT library subprograms could be used to fit the IC’s with a
B-spline (for example: L2sff for continuous IC’s and Di2sf for fitting discrete 1C data). At the

.8

end of each time-step the solution is printed out at x = % % and % The "Return-End" sub-

routine PostD is used as a dummy place-holder for a subroutine needed to deal with coupled
ODE’s. as described in section 6. Note that the ODE place-holder V need not be initialized,
since it is never interrogated by POST. The main program is

Real tstop.V(1) dt ,Mesh(100) U(C100)

Real errpar(2)
External AF,BC.PostD,Handle

nu =1 . nv=20

errpar(l) = 1.0e-2 ; errpar(2) = 1.0e-6

tstop = 1.0e0 . dt = 1.0e-6

k = 4

ndx = 4 # The number of distinct B-spline mesh points.

Call Unb(0.0e0.1.0e0,.ndx.k.Mesh,nmesh)
Call Setr(nmesh-k.1.0e0.,U) # Initial conditions for U.

Call Posts(U,nu,k.,Mesh,nmesh,V,nv,
0.0e0,tstop,dt,
AF BC,PostD,nv,
errpar,
Handle)

Stop

End

Since n, = 1, the AF and BC subroutines listed below use particularly simple dimension state-
ments for their arguments. Note that since the arrays A, ... , FUxt are set to zero before entry
to AF, only the active a and f terms, and their derivatives, need be computed in AF. The sub-
routine AF for specifying the PDE (4.1) is

Subroutine AF(t,Xe,nxe U, Ux, Ut . Uxt,nu,V,Vt nv,
A, AU, AUx ,AUt ,AUxt ,AV AVt ,
F,.FU,FUx ,FUt,FUxt,.FV,FVt)

Real t.,Xe(nxe) . U(nxe) Ux(nxe) . Utlnxe) Uxt{nxe) V(1) Vi(l),

A(nxe) ,AU(nxe) ,AUx(nxe) ,AUt(nxe) ,AUxt(nxe) ,AV(nxe) ,AVt (nxe) ,

F(nxe) ,FU(nxe) ,FUx(nxe) .,FUt(nxe) ,FUxt(nxe) ,FV(nxe) .FVi(nxe)

Do i =1 , nxe
{
ACi) = Ux(i) : AUx(i) =1
F(i) = Ut(i)+(-Xe(i)+t**2)*Exp(Xe(i)*t)
FUt(i) =1
}
Return

The subroutine BC for specifying the BC's (4.2) is

Subroutine BC(t,L,R,U,Ux, Ut , Uxt,nu,V,Vt,nv,
B.BU,BUx ,BUt ,BUxt BV BVt)

Real ¢,L R .U(2),Ux(2),Ut(2) . Uxt(2) V() Vi(l

),

B(2) ,BU(2) BUx(2) ,BUt(2),BUxt(2) ,BV(2) BVt(2)
B(l1) = U(1)-1.0e0 #ult,0) = 1.
B(2) = U(2)-Exp(t) # ult, 1) = Exp(t).
BU(I) = 1
BU(2) = 1
Return
End
The following output subroutine simply prints u(t,x)}, for x = —%— —%— and % at the end of

each successful time-step. The dimension statement for the various arguments is for arbitrary

input, and thus will not be repeated in subsequent examples.
Subroutine Handle(t0O,UO,VO,t]1.Ul.V]. . nu,nxmk,

Real t0,U0(nxmk,nu),VO(nv), tl Ul(nxmk,nu), K VI
Real xe(3),Ue(3)

If (10 = tl) | Return |

xe(l) = 1.0e0/3.0e0 ; xe(2) = 0.5¢0 : xe(3)
Call Splne(k.X,.nx,Ul,xe,3,Ue)

Write(lImach(2),9000) t1,{(Ue(i),i=1,3)
9000 Format(" U(x,",Iple9.2,") =",1p3el0.2)

Return

End

The output of the above program is

u(x, 1.00E-06) = 1.00E 00 1.00E 00 1.00E
U(X, 7.38E-04) = 1|.00E 00 1.00E 00 1.00E
U(X, 1.58E-01) = 1.0SE 00 I.08E 00 1!.11E
U(X, 6.20E-01) = 1.23E 00 1.37E 00 1.52E
U(X, 1.00E 00) = 1.40E 00 1.6SE 00 1.9SE

nv,k.X,nx,.dt,tstop)

{nv) X(nx).,dt.tstop

= 2.0e0/3.0e0

00
00
00
00
00

A skeptic might observe that it is difficult to determine that the above output is in fact accurate
to 1%. Well, since the exact solution of the problem is known, the program may also check the
accuracy of the numerical solution using the PORT [23] library subroutine Eesff to estimate the
error ||u—i] in the computed solution #. By changing the body of Handle to read

Common /Time/ tt
Real tt

Real eU, Eestl

External Uofx # Returns u(t ,x) = Exp(xt).

If (t0 = t1) { Return |

tt=tl

eU = Eesff(k,X,nx Ul ,Uofx) # Get the error in Ul.

Write(llmach(2).,9000) tt,eU

9000 Format(" Error in U(x.,". Iple9.2.") =",1ple9.2)

where the following subroutine computes the exact solution u of (4.1)-(4.3)

Subroutine Uofx(x.nx,U,W)
Real x(nx).U(nx) W(nx)

Common /Time/ t
Real t

Do i =1 |, nx

UCi)=Exp(x(i)*t)
!

Return

End
we may obtain the output

ERROR IN U(X, 1.00E-06) = 2.98E-08
ERROR IN U(X, 7.38E-04) = | .19E-07
ERROR IN U(X, 1.58E-01) = 1.19E-03
ERROR IN U(X, 6.20E-01) = 5.96E-03
ERROR IN U(X, 1.00E 00) = 6.84E-03

and we can see that (4.1)-(4.3) has indeed been solved accurate to 1%.

Example 2.

In example | u, may be computed from the B- splme representation for u. However, u is
accurate to O(h*), while u, is only accurate to O(h*™Y), where # is the B-spline mesh spacing
used, see Appendix 1. The next example shows how u, may be computed accurate to O (h*)
by considering (4.1)-(4.3) as a system of 2 coupled PDE s through setting u; = u and u; = u,.

The PDE (4.1) then becomes

U, = uy +(x—r)e~

Uy = U,

and the BC's (4.2) become

S0 -

ul(t,()) = |

(4.5)
u, (1) =e'.
The initial conditions are
u (0,x) = |
(4.6)
u;(0,x) = 0.

The following program solves (4.4)-(4.6) using Posts, with a cubic B-spline, over a spatial mesh
consisting of 4 equally spaced, distinct points on (0,1), with the time-evolution carried out to
1072 absolute accuracy. The error at each time-step is printed out to confirm the accuracy of
the computed solution. The main program is

Real tstop,V(1) dt Mesh(100) U(200)
Real errpar(2)
External AF,BC.,PostD,Handle

nu=2 . nv=20
errpar(l) =0 ; errpar(2) = 1.0e-2
tstop = 1.0e0 . dt = 1.0e-2

k = 4
ndx = 4 # The number of distinct B-spline mesh points.
Call Unb(0.0e0,1.0e0,ndx,k . Mesh,nmesh)

Call Setr(nmesh-k,1.0e0,U) # Initial conditions for Ul=1l.
Call Setr(nmesh-k.0.0e0,U(nmesh-k+1)) # Initial conditions for U2=0.

Call Posts(U,nu,k Mesh,nmesh,V,nv,
0.0e0,tstop,dt,
AF BC,PostD,nv,
errpar,
Handle)

Stop

End

The dimension statements for the various arguments of the AF and BC subroutines given
below are for arbitrary input, and thus will not be repeated in subsequent examples. The sub-
routine AF specifying the PDE (4.4) is

Subroutine AF(t . Xe.nxe U, Ux Ut Uxt,nu,V .Vt nv,
A. AU, AUx AUt ,AUx t AV AV,
F.FU,FUx ,FUt,FUxt,FV. FVt)

Real t.Xe(nxe).U(nxe,nu) . Ux(nxe.nu) Ut(nxe,nu) Uxt(nxe,nu),
Vinv) . Vt(nv),
Alnxe.nu) AU (nxe,nu.nu) AUx (nxe.nu,nu),
AUt (nxe,nu.nu) ,AUxt(nxe,nu,nu),
AV (nxe.nu.,nv). AVt (nxe.nu,nv),
F(nxe.nu) . FU (nxe.nu,nu) ,FUx (nxe.,nu,nu),
FUt(nxe,nu.nu) .FUxt(nxe,nu,nu),
FV (nxe,nu,nv) . FVt (nxe,nu,nv)

Do i =1 , nxe
{
ACi, 1) =UCi,2) . AUCiI,1,2) =1
F(i. 1) =Ut(i,D+(-Xe(i)+t**2)*Exp(Xe(i)*t)
FUt(i,1,1) =1
A(i.2) =UCi. 1)y ; AUGI,2.1) =1
F(i,2) =U(i.2) . FU(i,2,2) =1
}
Return
End

The subroutine BC specifying the BC's (4.5) is

Subroutine BC(t.L.,R,U,Ux,Ut.Uxt,nu,V,Vt, nv,
B.BU,BUx.BUt,BUxt BV ,BVt)

Real t.L.R.,U(nu,2).Ux(nu,2).Ut(nu,2) . Uxt(nu,2).V(inv) Vtinv),
B(nu,2).BU (nu,nu.,2).BUx (nu,nu,2),
BUt(nu,nu.2),BUxt(nu,nu,2),
BV (nu.nv,2) . BVt (nu,nv,2)

B(1,1)
B(1,2)

I

U(l,1)-1.0e0 # UL, 0) = 1.
U(l.2)-Exp(t) # U, 1) = Exp(t).

BU(1.1.,1)
BU(L,1,2)

1
1

Return

End

The body of the Handle subroutine simply checks the accuracy of the computed solution, using
EesfT,

Common /Time/ tt
Real tt

Real eU(2) Eesft
External Ulofx,U20fx # To compute ul and u2.

If (t0 = t1) { Return |
tt=tl

eUCl) Eesff(k.X,nx,UlL(1,1) ,Ulofx)
eU(2) = Eesff(k.X,nx,Ul(1,2),U20fx)

I

Write(llmach(2).9000) tt,eU(l), eU(2)
9000 Format(" Error in U(x,",Iple9.2,") =" 1p2e9.2)

where the following subroutine computes the exact value of the first component of the solu-
tion, u,,

Subroutine Ulofx(x,nx U, W)
Real x(nx).U(nx) W(nx)

Common /Time/
Real t

Do i =1 , nx

UCi)=Exp{(x(i)*t)
|

Return

End

and the following subroutine computes the exact value of the second component of the solu-
tion, u,,

Subroutine U2ofx(x,nx,U,W)
Real x(nx),U(nx) W(nx)

Common /Time/
Real t

Do i =1 |, nx

{
UCi)=t*Exp(x(i)*1)
}

Return

End

The output of this program is

ERROR IN U(X, 1.00E-02) = 1.35E-05 2.33E-04
ERROR IN U(X, 7.00E-02) = 2.89E-04 2.60E-03
ERROR IN U(X, 1.84E-01) = 1.43E-04 5.00E-04
ERROR IN U(X, 5.45E-01) = 3.53E-04 1.24E-03
ERROR IN U(X, 1.00E 00) = 6.16E-04 2.82E-03

One reason for treating (4.1)-(4.3) as the system (4.4)-(4.6) is that the spatial derivative u, of
u = u, is obtained accurate to O (h*). instead of O(A*~"). In fact, for this example, the error
in u,, as computed by differentiating the solution of (4.1)-(4.3), was 5.2*1072 and that com-
puted from (4.4)-(4.6) was 2.8*107%.

5. Coupled ODE’s and Non-Local Conditions.

It is often necessary to make a non-local statement about the solution of a PDE. For
example, the solution may be periodic [31], or it may be defined in a coordinate system which
is rotating, accelerating or being dynamically scaled [39]. Such statements may be accommo-
dated using the ability of POST to couple ODE’s in time to the PDE-BC formulation of section
2. PDE-ODE coupling may also arise naturally in the formulation of a problem {56].

How may a variable, say v(¢), which depends only upon time, be coupled to a variable,
say u(r,x), which depends upon both space and time? One way would simply be to tie the
value of u at a single point in space, say x=0, to the value of v'(¢) by a relation like

v'() = u(0,1).

The mechanism used by POST to handle such conditions is to say that there are ODE variables
v(¢) which are coupled to the PDE variables u(z,x) through the values of u(¢,x), and its partial
derivatives, at a finite number of points x. Let &(¢), the list of coupling points €, be a known
vector of length n,. Generalizing (2.1)-(2.2), the PDE is assumed to have the form

alr, x,u,u u, u,, v, v) =f(r, x,u,u,u, u, vv) (5.0
while the BC's are assumed to have the form

b, (t,u(e,.L),u, (t,L), u,(t,L),u,(t,L), v,v,) =0

bg (e, u(t,R), u (t,R), u,(t,R), u,(t,R), v,v,) =0
The ODE’s determining the ODE variables v are assumed to have the form
d(s, ulr,€(0), u, (¢ .€()), u, (t.6()), u, (t,6(0)), v.v,) =0, (5.3)

where d is vector-valued function of its arguments, and the notation u(¢.£(¢)) represents the
list

ule,&(0) =ule, (), -+ - ule, E,,E(t)). (5.4)

The length of d must be n,.

The PDE-BC-ODE combination must have the property that if the ODE solution vector
v(t) were given rather than unknown, then the resulting PDE-BC problem given by (5.1)-(5.2)
would be well-posed. That is, the ODE must be coupled to a PDE-BC system which is well-
posed in the sense described in section 9.

For certain applications, neither v nor v, may actually be present in d, and (5.3) may not
be a differential equation involving v and v,. In these circumstances, d merely represents a
condition to be placed upon the PDE solution u. Such a case occurs when a condition like

_lru(l.x)dx=l

0

is to be imposed on the solution of the PDE, rather than a "standard” boundary condition. By

replacing
Xt

ult,x)dx

Xt

over each B-spline mesh interval, by a Gaussian-quadrature rule 137] using k/2 points, the full
integral may be computed exactly since the numerical solution u is a B-spline of order &

(degree k—1).

Thus, an integral statement about the solution of the PDE is equivalent to a

statement involving only the value of u{r.x) at a finite number of Gaussian-quadrature points

X.

6. Software for PDE-BC-ODE Combinations.

Posts is invoked by

Call Posts{(U,nu.k.X,nx.V.nv,

tstart,tstop.dt,
AF . B.D,nxi,
errpar,

Handle)

The input to Posts is precisely as described in section 4, with the exceptions and additions

noted below.

\Y

nv
AF

nxi

errpar

Handle

The initial conditions for the ODE variables v. V(i) = v, i=1,- - nv.
If n, is 0, V may be any array, and need not be initialized, since the con-
tents of V are neither interrogated nor altered in any way in this case.

The number n, of ODE variables v.

A subroutine for computing the a and f terms in the PDE. AF must be
declared External in the user’s calling program. This user-supplied subrou-
tine will be described later.

A subroutine for computing the boundary conditions. B must be declared
External in the user’s calling program. This user-supplied subroutine will
be described later.

A subroutine for computing the ODE d. D must be declared External in
the user’s calling program. This user-supplied subroutine will be described
later.

The maximum number of spatial PDE-ODE coupling points allowed.

A Real vector of length 2 for determining the error desired (to be allowed)
in the solution of the equations in time. For each component of the ODE
solution v, the error at each time-step in the time integration will be at
most
errpar(1) * | v, [+errpar(2).

Thus, errpar{1)=0 gives the solution accurate to an absolute error of
errpar(2), and errpar(2) =0 gives the solution accurate to a relative error of
errpar(1).

This user-supplied output subroutine will be described later. Handle must
be declared External in the user’s calling program.

The output of Posts is also as described in section 4, with the addition that

\Y, -

The value of v(tstop).

The scratch space used on the dynamic stack of the PORT library [23] is, neglecting lower

order terms,

n, (n,—k)|3k n, +n, +16

Real words (storage units).

The user-supplied subroutines AF, B and D, which define the PDE-BC-ODE problem to
be solved, are now described. When Posts needs to compute a and f, it will

Call AF(t . Xe.nxe U, Ux Ut Uxt,nu,V,Vt, nv,

A AU, AUx AUt ,AUx t ,AV AV,
F.FU,FUx ,FUt ,FUxt ,FV FVt)

The input to AF is as described in section 4, with the addition of

\Y
Vit
nv
AV
AVt
FV
FVit

The values of v(2). V(i) = vy, (1), i=1, - nv.
The value of v, (¢). Vt(i) = v, i=l - nv.
The number n, of ODE variables v.

An array set to zero, see below for output values.
An array set to zero, see below for output values.
An array set to zero, see below for output values.
An array set to zero, see below for output values.

The output from AF must be as described in section 4, with the addition of

AV

AVt
FV

FVt

The partial derivatives of a with respect to v at the Xe(i). AV(ix,ij)
8a,/9v, (1t Xelix)), for ix=1,--- nxe, i=1, - nu, and j=I, - - nv.

The partial derivatives of a with respect to v, at the Xe(/), as above.

The partial derivatives of f with respect to v at the Xe(i). FV(ix,ij) =
0.f./0v; (1. Xelix)), for ix=1, - nxe, i=I, - nu, and j=I, - nv.

The partial derivatives of f with respect to v, at the Xe(/), as above.

When Posts needs the boundary conditions it will

Call

B(t.L,R,U,Ux, Ut Uxt,nu.V,Vt.nv,

B,BU,BUx,BUt ,BUxt,BV BV1t)

The input to B is as described in section 4, with the addition of

\Y
Vi
nv
BV
BVt

The value of v(), V(i) = v, (1), i=1, -+ nv.
The value of v, (¢), Vt(i) = v (1), i=1, - nv.
The number n, of ODE variables v. '

An array set to zero, see below for output values.
An array set to zero, see below for output values.

The output from B must be as described in section 4, with the addition of

BV
BVt

BV(i.j.1) = 8b,/8v; and BV(i,j.2) = dbg,/dv;, for i j=1, - nv.
BVt(i.j.1) = db;,/3v; and BVt(i,j,2) = dbg,/dv,, for i,j=1,- - nv.

When Posts needs the value of d it will

Call

D(t,k,X,nx,

U.Ut,nu,nxmk,V,Vt,nv,
Xi,Ixi,nxi,
D,.DU,DUx ,DUt ,DUxt ,DV ,DVt)

The input to D is

17 -

t - The current value of time.
k - The B-spline order.
- The B-spline mesh.
nx - The length of the mesh X.
U - The B-spline coeflicients for the PDE solution u.
Ut - The B-spline coefficients for u,.
nu - The number of PDE variables u.
nxmk - nxmk=nx-k is provided so that U and Ut may be dimensioned to be
U(nxmk,nu) and Ut(nxmk.nu).
\ - The value of v(1).
Vit - The value of v, (¢).
nv - The number n, of ODE variables v.
nxi - The maximum number of spatial coupling points allowed.
D - An array set to zero. see below for output values.
DU - An array set to zero, see below for output values.
DUx - An array set to zero, see below for output values.
DUxt - An array set to zero, see below for output values.
DV - An array set to zero, see below for output values.
DVt - An array set to zero, see below for output values.

The output from D must be as described in section 4, with the addition of

Xi - The list of spatial coupling points §.

Ixi - The current active length of Xi. Must have 0 < Ixi < nxi.

D - DG) = d, fori=l, . nv.

DU - The value of the partials of d with respect to u(¢,¢,). DU jix) =
8d,/du; (¢ Xilix)), i=1.-- - nv, j=1,--- . nuand =1, Ixi.

DUx - The value of the partials of d with respect to u,(¢.£,).

DUt - The value of the partials of d with respect to u,(¢,§,).

DUxt - The value of the partials of d with respect to u, (1.£,).

DV - The value of the partials of d with respect to v,. DV(i,j) = 84d,/dv;. for
ij=1,-+-,nv.

DVt - The value of the partials of d with respect to v,. DVt(ij) = 8d/dv,. for
ij=1,-++,nv.

The user-supplied output subroutine Handle is now described. At the end of each time-step,
Posts will

Call Handle(t0 U0, VO, tl Ul VI nu,nxmk,nv.k,X, nx,
dt,tstop)

The input to Handle is as described in section 4, with the addition of

VO - The ODE solution v(¢0) is given by V0.

Vi - The ODE solution v(t1) is given by V1. 1f 10 = 1, then a restart is in pro-
gress and the values in Ul and V1 are meaningless.

nv - The number n, of ODE variables v.
The output from Handle is as described in section 4, with the addition of

V1 - May be altered by the user.

The Double Precision version of Posts is called Dposts. The calling sequence for Dposts is pre-
cisely the same as that for Posts, with all floating-point arguments Double Precision, except
errpar, which remains Real. The amount of scratch space used by Dposts on the dynamic stack
of the PORT library [23] is, neglecting lower order terms,

n, (n,—k)|3k n, +n, +16

Double Precision words (storage units).

Example 1.

The first example of the use of Posts to solve a PDE-BC-ODE combination is contrived to
be simple, but illustrative. Consider the PDE

u = u, +v(+gle.x) on (0.1 (6.1)
with the coupled ODE

v, (1) = u({,%), | (6.2)

where g(f,x) is chosen so that the solution is known, say wu(z,x) =cos(xt) and
v(¢) = 2sin(t/2). The BC's are then taken to be

u(t,0) =1
(6.3)
ule,1) = cos(y)
with initial conditions
u(0,x) =1
(6.4)
v(0) =0,

The following program solves (6.1)-(6.4) using Posts, with a cubic B-spline (k = 4) over
a spatial mesh on (0,1) consisting of 4 equally spaced, distinct points, with the time evolution
carried out to 1072 relative accuracy. The error at each time-step is printed out to confirm the
accuracy of the numerical solution. The main program is

Real tstop,V(l) dt ,Mesh(100),U(100)
Real errpar(2)
External AF,BC . Dee . Handle

nu =1 : nv =1

errpar(l1) = 1.0e-2 : errpar(2) = 1.0e-6

tstop = 1.0e0 ; dt = 1.0e-6

k = 4

ndx = 4 # The number of distinct points in the B-spline mesh.
Call Unmb(0.0e0,1.0e0.ndx.k,Mesh,nmesh) # Create the mesh.
Call Setr(nmesh-k,1.0e0,U) # Initial conditions for U.

V(l) =0 # Initial value for V.

Call Posts(U,nu.k.Mesh,nmesh.V.nv,
0.0e0,tstop.dt,
AF BC.,Dee.nv,
errpar,
Handle)

Stop
End

The only change in the subroutine AF of example 2 in section 4 is in the code for specifying
the PDE, (6.1),

Do i =1 ., nxe
{
ACi, = Ux(i,l) . AUx(i, 1, 1) =1
F(i,l) = -v(D)+Ut (i,)+
Xe(i)*Sin(Xe(i)*t)-t**2*Cos(Xe(i)*1)+2.0e0*Sin(t/2. te0)
FUt(i,1,1) =1
Fv(i,1.,1) = -1

}

The only change in the subroutine BC of example 2 in section 4 is in the code for specifying
the BC’s, (6.3),

B(1.,1) =U(1,1)-1.0e0 # u(t.,0) = 1.
B(1,2) = U(1,2)-Cos(1) # ult, 1) = Cos(t).
BU(CL,1.,1) =1

BU(1,1,2) =1

The following subroutine specifies the d of (6.2). The dimension statement for the various
arguments is for arbitrary input, and thus will not be repeated in subsequent examples.

20

Subroutine Dee(t . k,X,nx,
U.Ut.nu,nxmk.V.,Vt nv,
Xid,LXid NXid,
D.DU.DUx,DUt,DUxt DV, DV1t)

Real t.X(nx) , U(nxmk,nu) Ut(nxmk,nu) . Vinv) Vi(nv) Xid(NXid),
D(nv) .DU (nv.nu.NXid).,DUx (nv.,nu,NXid),
DUt (nv,nu , NXid) ,.DUxt(nv,nu,NXid),
DV(nv,nv) ,DVt(nv,nv)
Real Ewel(l)

Xid(1) = 0.5e0 : LXid =1

Call Splne(k,X,nx,U,Xid, !, ,Ewe) # Ewel(l) = u(t, 1/2).
D(1) = Vt(l)-Ewe(l) : DUCL,1,1) = -1 DVe(l. 1) =1
Return

End

The only change in the Handle subroutine of example 2 in section 4 is in the code for comput-
ing and printing the error in the computed solution.

Common /Time/ tt
Real tt

Real eU.,eV Eesft
External Uofx # To compute u(t,x).

[f (t0O = tl) { Return }
te=tl
eU=Eesff(k.X.nx.Ul Uofx) : eV=Abs(VI(1)-2.0e0*Sin(t1/2.0e0))

Write(limach(2),9000) tl,eU,eV
9000 Format(" Error in U(x,",lple9.2,") =" 1ple9.2,
" error in V =", 1plel0.2)

The only change in the subroutine Uofx, for computing u, of example | in section 4 is the
code for computing u.

Do i =1 , nx

{
U(i)=Cos(x(i)*t)

!

The output from this program is

ERROR IN U(X, 1.00E-06) = 2.24E-08 ERROR I[N V 0.

ERROR IN U(X, 7.40E-04) = [.19E-07 ERROR IN V = 5 82E-]1
ERROR IN U(X, 1.55E-01) = 1.09E-03 ERROR IN V = 2. 52E-04
ERROR IN U(X, 4 .62E-01) = 2.61E-04 ERROR IN V = 2 09FE-04
ERROR IN U(X, |.00E 00) = 1.04E-04 ERROR IN V = 6 .69FE-04

and we see that (6.1)-(6.4) has indeed been accurately solved.

Example 2.
The second example is the use of Posts to solve a nonlinear heat equation subject to
periodic boundary conditioris. Consider the PDE
U, = U, —u+g(r.x) on (—m +m), (6.5)
subject to periodic boundary conditions
ult,—m) = ult.+m) (6.6a)
ut,—m) = u (t+m), (6.6b)

where g(r.x) is chosen to make the solution u a known function, say u(z.x) = cos(x)sin(z).
We must re-write (6.5)-(6.6) slightly to put it into the form (5.1)-(5.3). Define an ODE vari-
able v(¢), which will play the role of u(t,—w) = u(¢,+m). The BC’s used are

ult,—m) = v(y)
(6.7)

ult,+m) = v(y)

which force (6.6a) to hold. The remaining condition, (6.6b). is used to determine v(¢). Rela-
tion (6.6b) is an example of an ODE of the form (5.3) which has neither v nor v, present. The
ODE used to determine v(¢) is then

ulr,—m) = u (t,+m), (6.8)
which forces (6.6b) to hold. The effect of (6.7)-(6.8) is to treat (6.5)-(6.6) as a PDE-BC prob-
lem whose solution has floating, v(¢), boundary values which are to be determined by (6.8).

The following program solves the PDE-BC-ODE combination (6.5)-(6.7)-(6.8), using
cubic B-splines over a mesh consisting of 7 equally spaced. distinct points on {—m.+m). with
the time-evolution carried out to 1072 relative accuracy. The error at each time-step is printed
out to confirm the accuracy of the computed solution. The main program is

Real tstop.V(1).,dt Mesh(100) UCIO0)

Real errpar(2)
External AF.,BC.Dee.Handle

nu =1 : nv =1
errpar(1) =0 . errpar(2) = 1.0e-2
tstop = 8.0e0*Atan(1.0e®) . dt = 1.0e-1

k = 4
ndx =7 # The number of distinct B-spline mesh points.
Call Umb(-4.0e0*Atan(1l.0e0).+4.0e0*Atan(]1.0e0) ,ndx.k.Mesh.nmesh)

Call Setr(nmesh-k.0.0e0,U) # Initial! conditions for U.
Vil)y =0 # Initial conditions for V.

Call Posts{(U,nu.k Mesh,nmesh.V.nv,
0.0e0,tstop.,dt,
AF . BC,Dee, 2,
errpar.,
Handle)

Stop
End

The body of the subroutine AF for (6.5) is

Do i =1 ., nxe
{
ACi, 1) = Ux(i 1) o AUxCi, 1, 1) =1
FGi,l) Ut (i, D+UCH, 1) **3-
Cos(Xe(i))*(Cos(t)+Sin(t)+Cos(Xe(i))**2*Sin(t)**3)
FUtCi L, 1) =1 : FUCGI, I, 1) = 3.0e0*U(i,1)**2
}

while the body of the subroutine BC for (6.7) is

B(1,1) =U(l.1)-V(Il)
B(1,2) =U(1,2)-V(1)

'
—

BUCL,L,1) =1 ; BV(l,1,1)
BU(I,1,2) =1 ;. BV(l,1,2)

I

and the body of the subroutine Dee for (6.8) is

()
(O8]

Real UL(2) UR(2)
Xi(l) = X(1) :© Xi(2) = X{(nx) . LXi =2

Call Spind(k. X, nx. U, Xi(l). 1. 2.UL)
Call Spind(k.X,nx,U,Xi(2). 1,2 UR)

D(l) = UR(2)-UL(2)
DUx(1,1.,2) =1 ; DUx(l.l,1) = -1

The body of the subroutine Handle for computing and printing the error is
Common /Time/ 11
Real tt

Real eU,Eesff.eV
External Uofx # To compute UCt x).

If (10 = ¢l) { Return }
tt=tl
eU=Eesff(k . X,nx Ul ,Uofx) . eV = VI(1)+Sin(tl])

Write(llmach(2),9000) tl.,eU.eV
9000 Format(" Error in U(x," Iple9.2.") =" 1ple9.2,
" error in V =" 1plel0.2)

where the body of the subroutine Uofx is

Do i =1 |, nx

{
UCi)=Cos(x(i))*Sin(t)

i

The output of this program is

ERROR IN U(X, 1.00E-01) = 3.77E-04 ERROR IN V = -3 . 77E-04
ERROR IN U(X, 9.21E-01) = 6.46E-03 ERROR IN V = -6.46E-03
ERROR IN U(X, [.33E 00) = 6.07E-03 ERROR IN V = -5.47E-03
ERROR IN U(X, 1.59E 00) = 6.93E-03 ERROR IN V = -6.93E-03
ERROR IN U(X, 2.21E 00) = 9.92E-03 ERROR IN V = -9 .92E-03
ERROR IN U(X, 2.61E 00) = 9.59E-03 ERROR IN V = -2 19E-03
ERROR IN U(X, 3.09E 00) = 1.45E-02 ERROR IN V = 6.15E-03
ERROR IN U(X, 3.83E 00) = 1.15E-02 ERROR IN V = -9 65E-03
ERROR IN U(X, 4.94E 00) = 8.31E-03 ERROR INV = 8 31E-03
ERROR IN U(X, S.76E 00) = 8.49E-03 ERROR IN V = -6.36E-03
ERROR IN U(X, 6.10E 00) = 7.79E-03 ERROR IN V = -4 32E-03
ERROR IN U(X, 6.28E 00) = 7.23E-03 ERROR IN V = -4 |6E-03

7. Error States.

This section provides a list of the error states (23] which may be encountered when using
POST. Some interpretation of these error messages is made to aid the user in finding bugs (if
they exist) in the user-supplied code AF, B, D or Handle. For each level of (entry to) POST,
the error message for a given error state is the same, but the error number may vary from one
level to the next. The list of error states below, along with interpretation, is the complete set

224 .

of error states for the POST package as obtained from the lowest level of POST, namely PostB.
The error states flagged by an * can occur only when POST is entered at a level below Posts.
they cannot occur when Posts is invoked.

1

2
3
4
5
6
7

9+
10*
1
12*
13*
14~
15
16
17
18
19
20

nu<0.

nv <0,

nu=0=nv.

nu>0 and k<2

nu>0 and nx<2"k.

tstart+dt=tstart. The user-chosen initial value for the time-step dt is too small.
The input value of dt has the wrong sign. dt and tstop-tstart must have the same
sign.

nxid <0.

theta<0 or theta> 1.

Keepjac not one of (0,1.2).

miter<1.

mgq<l.

kmax <1.

kinit<1.

x(1) is not of multiplicity k.

x(nx) is not of multiplicity k.

X 1S not monotone increasing.

Cannot have nxid>0 and nu=0.

Cannot have nxid>0 and nv=0.

dt=0. (Recoverable). The time-step has become too small. The problem may be
very badly scaled. that is units like light-years and micro-grams are being used simul-
taneously. Another cause is too small an accuracy requirement, like errpar(2) =0
when the solution is exceedingly small.

dt=0 returned by Handle. (Recoverable). Handle lowered dt and it became too
small.

dt returned by Handle has the wrong sign. (Recoverable).
Cannot raise dt in Handle when Failed. (Recoverable).
e(i) <=0 returned by Error. (Recoverable). The error request is too small.

Dirichlet BC's are overdetermined. (Recoverable). There are too many Dirichlet
BC’s.

Mixed BC's are overdetermined. (Recoverable). There are too many mixed BC's.

Improper BC's. (Recoverable). The BC’s and the PDE’s do not match properly. see
section 9.

Too few BC’s. (Recoverable).

Too many BC’'s. (Recoverable).

Ixid<0. (Recoverable). User supplied subroutine D returned Ixid <0.
Ixid > nxid. (Recoverable). User supplied subroutine D returned Ixid > nxid.
nxid altered by D.

S5 -

33* - mgq=k-1 and Order(i,j)=0. (Recoverable). Must have mgq=Kk when one of the
PDE’s is of zero order.

34 - PDEC() is vacuous. (Recoverable). There is no i PDE.

35* . AF Failure. (Recoverable). AF failures forced dt=0.

36* - B Failure. (Recoverable). B failures forced dt=0.

37* . D failure. (Recoverable). D failures forced dt=0.

38 - Singular Dirichlet BC's. (Recoverable). Hl-posed BC's forced dt=0.

39 - Singular mixed BC’s. (Recoverable). lil-posed BC's forced di=0.

40 - Singular PDE Jacobian. (Recoverable). ll-posed PDE forced dt=0.

41 - Singular ODE Jacobian. (Recoverable). 1lI-posed ODE forced dt=0.

42 - Jacobian coefficient of u,, changes sign. (Recoverable). The linearized problem has a

singular solution, which forced dt=0.

43* . Too many Newton iterations required. (Recoverable). The nonlinear equations could
not be solved, which forced dt=0. The user's computation of the Jacobian values in
AF. B or D may be incorrect. Another cause of this problem could be insufficiently
accurate computation of the Jacobian values or the values of a and f.

8. Time Discretization.

A one-step. implicit finite difference method is employed for the time discretization of
(5.1)-(5.3). The resulting nonlinear ODE’s in space are then linearized, as are the BC's and
the original ODE’s. The solution of the resulting system of linear ODE’s in space, subject to
linear BC's, with coupled linear algebraic equations. is accomplished by Galerkin’s method,
using B-splines, as described in section 9.

An extrapolation scheme (see Appendix 2) is applied to the results of this one-step finite
difference method in time. This allows an extrapolation step-size and order monitor (41] to be
employed which dynamically changes both the local step-size und order of the time-integration
scheme to satisfy the user’s error request in a reasonably optimal fashion.

Although this outline of the solution process appears to be inconsistent with that given in
section 3. both outlines produce the same numerical solution. Spatial discretization followed by
discretization of the resulting ODE’s in time gives the same mathematical formulation as
discretization in time followed by spatial discretization. For overview, the former outline is
conceptually simpler, however, for the derivation and implementation of the equations the
latter is preferable.

The time discretization is pdramelerized by a number @ obeying 0 £ 8 < 1. For § =1
L 1. .
this gives the very stable backward-Euler scheme, 6 = 3 gives the Crank-Nicholson scheme

[35]. and 6 = 0 gives the rather unstable forward-Euler scheme. The description of a canonical
time-step follows. Let u®, v° denote the old. known solution at time ¢°. Assume that we want
to find the solution u. v at time ¢, and let & = ¢—¢° be the time-step. All time derivatives are
0 —u? 0

then replaced by time differences, as with u, = - 8“ LU, = lk;x and v, = v Sv . This
reduces equations (5.1)-(5.3) to the following system of nonlinear ODE’s in space, subject to
nonlinear BC’s, with a coupled nonlinear system of equations

u—u°® u,—u} v—v°
a(r+(1-9)r°, x, Qu+(i—0)u°, 9ux+(1—0)u;’,_TQ:‘:s;5-‘ Bv+(1—0)ve, 5), =
(8.1a)
u® U uyg v=v°

f(9t+(1—9)t°.x.9u+(l—9)u",0ux+(l-—0)uf.E;—, ana i -

226 -

b, (9r+(1—=8) . Qu+(1=u’ (12 L), fu +(1=lu2(¢ L),

(8.1b)
ule L)—uo (e L) w e L)—u2Ce? L) y—yo
6 - 8 A7 0 SNR BN | ory 8 7 J
ba(Gr+(1—6) 7. Bu+(1=0u® (1 R). fu +(1=0)u’(;* R)
(8.1¢)
— ¢ u (t,R)—ul(t°. R) _yo
u(r, R)=u’(” . R) Uy x Cav+(l—gve. Y27 2
) b5} 5
d(8r+(1-6)1°, Qu(r . E)+(1 =0 u° (¢ £°) bu (1 &) +(1-0ul(° £°),
(8.1d)
ulrE9—uo (089 u (rg)-u(P gD vy
5 N 8 PR 7/ N B U B ¢ v 0 A 8 7 ”
where £° = 9¢+(1—-0)€°.
An iterative. quasi-Newton method is used to solve (8.1). Let u’, v/ denote the point of

linearization, with u/ =u(¢, x), v/ =v(¢), elc.

v" be the current iterative best estimates of the solution u, v.

tions for the corrections, wl(x) and z, tou” and v",

Also, let wy = u;(t, §,(1)). Finally, letu”
The linear, quasi-Newton equa-
are then

n, W, w n,
a;-%-z fay, Wi +0ay, w, +a,,, —-él—-i—a,{,m g" +2 Ga,v z+a;, -—]
J=1 x =1
(8.2a)
%o g g J Wi s g o T
f: +2 9//[4/ W, +9./1u f /um 5 +Z Ofiv/zj +frv”°8_
J=1 =t
nll w 4
b171+2 Obi/u/ WJ +0bil/u/rij+blllu”?j+bl{mﬁ +z gbLn Z; +wa <= 0 (82b)
=l =
n, W
bl,?11+z Gbij?mlw/+9bé/ujxwj.r+b£iuﬂ_8{~+béru, +Z gbRn Z +bR:v =0 (8.2¢)
=1 =1
T w. (&) w, (£))
n J J J U J
d +}§ lé(é)d,wﬂ W)0, w, (&) +dl, Tl d, -——"'8—{’- |+
(8.2d)
3 [0d! 2+ —28’—] =0

=1

The solution of (8.2) gives the corrections w and z to u™ and v" which produce the next quasi-
Newton iteration u"*!' and v"*'. Thus, (8.2) constitutes the iterative scheme for solving (8.1).
Equations (8.2) have the form

3 [a werayw)], =

J=1

(’D
w.l

(8.3a)

(l)+f(2l+2[(H (4)]+Z[gljili+g(7)

227

z.,: JElw (L) +B U L)]—y,‘“+2cr‘“ . (8.3b)
=1 oy

A alRw, (R)+BR'w X(R)] —y,R’+2cr"*’ (8.3¢)
J=1 J=1

zu i Uflll (6 42Dw (g/)) _d‘“+zldulzj' (83(])
jel =1 =

These equations may be simplified by setting

"V
w,=wy+3,2,W, (8.4)
p=|
where w, solves
(aMw,, +aw,) =V H P 4a P w, +a'w, (8.5)

subject to BC’s
L)W[)(L)+3(L’W(]X(L) = ‘Y(L’

(8.6)
a'®Fw,(R)+8'R'w, (R) = 4R
and w, solves
(aVw, +aw,) =g V+g P +aVw +aV'w, (8.7)
subject to BC’s
Dw (L)+B'"'w, (L) = o'
(8.8)

Riw (R)+B'R'w, (R) = o &

Linear systems of ODE’s, such as (8.5) and (8.7), subject to linear BC's, such as (8.6)
and (8.8), may be solved using Galerkin's method. as outlined in section 9.

When the w;, have been obtained from (8.5)-(8.6) and (8.7)-(8.8), the z may be com-
puted from the linearized ODE (8.3d), which is the system of linear algebraic equations

I du)*z i(u(l”wjpx £))+d u(lz' jp(g/)) =

p J=1 =1

(8.9)

dlj)+2 i(ljl w()jx(gl)+dij('[2)wﬂj(§l))

j=1 I=l
for z. When (8.9) has been solved for z, w may be obtained from (8.4).

The computation of w and z from (8.4)-(8.9) results in a single iteration in the solution
of the nonlinear ODE’"s (8.1), which itself constitutes a single time-step.

9. Spatial Discretization.

This section discusses the implementation of Galerkin’s method, using B-splines, !or solv-
ing systems of linear ODE’s, subject to tinear BC's. First the linear BC’s are put into a canoni-
cal form suitable for use by Galerkin'’s method. Next, each BC is paired with one, and only
one, of the ODE’s, so that the Galerkin equations may be formulated. As a by-product of
these first two phases., a number of error conditions are detected. For example, too many or
too few BC’'s may be detected. So may things like a BC on u'(L) when the ODE for u is onlv

S8 .

of first order. Thus, the extra processing which Galerkin's method requires also gives a great
deal of usefu!l debugging (error) information. Finally. the Galerkin cquations arc formulated.

The ODE's (8.5) and (8.7) have the form

2 3
(aVu, +a%u), = £+ +au, +a"u (9.1)

subject to BC's
a'l'u(L)+B8'"u (L) = y't
(9.2)

a®u(R) +BR'u (R) =y R

Reduction of BC’s to Canonical Form.
This section shows how to reduce the arbitrary linear BC's (9.2) to a canonical form suit-

able for use in Galerkin’s method. The linear BC's have the form, at x = L and x = R,
au+Bu, =1y. (9.3)
For a scalar equation (n, = 1) these BC’s have the form
au+Bu, =y
which, depending on whether 8 = 0 or not, may be written as either
Uu=1yp (B=0)
or (9.4)

u, = Au+yy (8 =0),

where yp = L oa=-% und Y= X oA generalization of this canonical form for n, = [to
a

systems with n, > 1 is now presented. This reduction assumes that each BC is for the purpose
of determining one of either u or u,. but not both. For example, the "BC’s"

() +u (D) =0

u(0)—u (0) =0,
which is a sloppy way to say u(0) =0 = u.(0), cannot be dealt with by the proposed generali-
zation, even though it is of the form (9.3).

Let ap and yp be the Dirichlet BC's, that is, those rows of a and y which have all
B, =0. Let apy, By and yy be the complementary | mixed, equations, that is, those rows of
a, B and y which have some 8, = 0.

Then ap will be an npxn, matrix, where | € np < n,. The Dirichlet BC's have the
form
apu = yp.
Let ny, be the number of u; which have ap, # 0 for some j. Then we must have My 2 np,
for otherwise the Dirichlet BC's will be overdetermined.
We may obtain a QR factorization [55] of the form

QapP=(R|C)

where Q is an npXnp orthogonal matrix, P is a n,Xn, permutation matrix, R is an npxXnp
upper triangular matrix, and C is an npx(n, —np) matrix. Let up be the first np elements of
P'u, and uf§ be the rest of P'u. We then have

(R|C)IP'u=Qyp

and thus

229 .

up = R'Qyp—R'Cuf. (9.5)
This is the canonical form which will be assumed for the Dirichlet BC's.

The mixed BC's have the form

ayut+Byu, =1vy
where ay, and By are myXn, matrices, with | < myy < n,. Let n,,, be the number of u,
which have By, # 0 for some i. Then we must have n,, 2 ny. for otherwise the mixed BC's
would be overdetermined. Precisely as in the Dirichlet case, we may obtain a QR factorization
of the form

QBuP=(R|[C).
Let uy, be the first my elements of P'u and let uf; be the rest of P'u. Then
Uy, =R7'Qyy —-R'Qapu—-R"'Cuf,. (9.6)
This is the canonical form which will be assumed for the mixed BC's.
The above BC forms, (9.5) and (9.6), have the form

Up= 7D+CDU
(9.7)
Uy = Au +‘yM +CM u,

where the appropriate columns of Cp, Cy, and A are zero.

The above form (9.7) generalizes the standard form for lincar BC's when n, = 1 1o the
case where n, > 1. It may not represent the most general generalization, but it is sufficient for
all problems of which the author is aware. and then some.

BC Placement.

Galerkin's method reduces (9.1)-(9.2) 1o a system of linear algebraic equations in the B-
spline coefficients for the solution u, by making the error in (9.1) orthogonal to euch of the B-
spline basis functions [42). Certain of these orthogonality relations are then replaced, or
modified, by BC equations. A BC on u; at x = L affects the first orthogonality relation for the
i ODE. Similarly, a BC on u, at x = R affects the last, N—k* relation for the i"* ODE.
Galerkin’s method requires that certain BC's be associated with (applied to) certain kinds of
differential equations. The restrictions (assumptions) made upon the relation between the
structure of the ODE’s and BC’s are listed below.

9.1) Any Dirichlet BC must be applied to an equation with some u,, present. This rule simply
requires that the ODE to which a Dirichlet BC is applied be of order at least one. For
example, if the ODE is

u, = 0

Uy =0 on (0,1),
with the BC «,(0) =1, and in the Galerkin equations one of the equations for u, is
replaced by that BC. the resulting Galerkin matrix will be singular (since there will be
only N—k—1 equations for the N~k unknown B-spline coefficients for u,).

9.2) Any mixed BC on u;, must be applied to un ODE with u; present. This is required by
the Galerkin procedure, and appears to be common sense as well.

9.3) It makes no difference where non-existent (inactive) BC’s are "applied" (associated), eg.
u; above.

The above rules may be turned into a nice mathematical problem by letting 0,}‘.“ be the
order of u, in ODE i at x = L, and similarly for O;®" at x = R. To be precise. O,L' is the
value of

230 -

lim {The order of u, in ODE i arx }.

x| L

where the order of u, in ODE i means the order of the highest order derivative of u; appearing
in ODE i at x, so that ODE’s like

xu, = sin(x) on (0,1)
have the proper order, namely 1, assigned at x = 0, instead of zero order. If u; doesn’t appeur
in ODE i, we simply set Ojt' = —1. Let T'Y be an n,x2 matrix with clements

0 if there is a Dirichlet BC for u, at x = L.

l—Z if there is no Dirichlet BC for u, at x = L.

i Il if there is a mixed BC for u; at x = L.
127 |=2 if there is no BC for u, at x = L.

with TR defined similarly for x = R. The previous restrictions 9.1-9.3 then become the prob-
lem of finding permutation arrays E5E’, EfF' ESR and Ejf’, each of fength n,, so that

9.4) Max 0%/, > T't'. Similarly for x = R.
j D i’

9.5 0%, > T'L'. Similarly for x = R.
M . °

9.6) Ext'N E' =¢=E"N ER
Restriction 9.6 makes sure that different BC’s aren’t applied to the same ODE, at the same
point.

Another condition is also added

9.7) Foreach i =1, .n, the number of times i appears in the arrays Egt’, Ef'. E5*" and

E;R'. withone of T4, T/5, T/R' or T/§" not equal to =2. should be less than or equal
to Max (O,;*', O,®").
/

Restriction 9.7 makes sure that the number of active BC's applied to each ODE equals the
order of that ODE, the number of degrees of freedom introduced by that ODE.

The permutation arrays Et'. EAF EfR', and EAR’ can easily be found using a tree-back-
tracking algorithm [25]. Once found. these arrays tell us which ODE has which BC’s associated
with it, and vice-versa.

An additional restriction is that

ZMIax (0L, 0,8) =¥ (The order of u;) =

J J

Y Max (0L 0,R") = 3.(The order of ODE /) =
! J]

J

Y The number of active BC's,
LR

which simply says that the number of degrees of freedom in the ODE system, whether counted
by ODE or by ODE variable, must be the same as the number of active BC's at x = L and
x=R.

These restrictions mean basically that there should be no transformation of the ODE sys-
tem which would lower the order of any u; in the ODE without introducing new ODE vari-
ables. For example, the ODE system

U =)
ulxx+ulx = U,

has ¥, order u, =2 = 4 =Y order ODE,, which violates the above restriction. The ODE
may easily be altered to read, however,

231 -

U =0

U = W
which has ¥ order w; =2 # 3 = ¥ order ODE, . which is better. Finally, it can be altered to
read

Uy =10

Uiy = U
which has ¥ order u; = 2 = ¥ order ODE,.

It is possible to have BC's which are really initial conditions, as in the problem

U xx =0

— on (0.1)
with BC’s

U|(0) _—'0 = ulx(())

Uz(” =0

However, the problem
Uy =0 on (0,1)
subject to u,(()‘) =0 = u,,(0) cannot be handled directly using the current BC placement algo-

rithm.

Galerkin's Method, using B-splines, for Linear Systems of ODE’s.

This section shows how Galerkin's method, using B-splines, may be used to solve lincar
systems of ODE’s, of the form (8.5) and (8.7), subject to linear BC’s of the form (9.3).

Let the B-spline mesh 7 be given, with n elements, as described in Appendix 1. We wish
10 solve linear ODE systems of the form

(a"u,+a%u), = @Vu, +aPu) +1" +7 (9.8)

subject to lincar BC's of the form (9.3) at x =L and R. Let (f.g) = }f(x)g(x) dx be
L

the standard L, inner-product. The Galerkin equations for (9.8) are, after the usual integration
by parts [42],

nu
-Ya\ up+a;Pu. By) +Ca; u,+a;"u. B+

i iy Y
Jj=1
(9.9)
(a"uy+aPu B, |R=—Cf" B,) +f""B, |F+(£ B,).
These functional equations are now transformed into linear algebraic equations. Let
n—k
Uy =Y Yirig-nnBg(x) j=lL.---.n, (9.10)

q=!

where the B, are the B-spline basis functions (see Appendix 1). This ordering of the B-spline
coefficients y results in an interleaved structure, not a block structure. This ordering is chosen
1o give a system of linear algebraic equations which is banded, rather than block banded.

Aside from boundary terms (those terms involving only x = L or R) the Galerkin matrix
G is given by the equations:
< ik i (2 (3))
3 2[(a,"" B, +a;*B,. B,) +(a;'B,, +a;"B,. B,)| yjsig-11n =

Jj=1 g=i

232 -

911

"y n—k)

E ZGI"Hp—lln” j+ig—=iin, y/-Hq-(Vn“ . I=]‘ TR p=]~ o on—k

j=1 g=I|

Since [p—q| < k and |i—j| < n,, we see that the half-bandwidth of G s
n,—1+ (k=1 n,+1 = kn, and the bandwidth of G is

u
2kn,—1. (9.12)

This banded storage scheme for G is quite efficient. This is best seen by noting that the total
number of non-zero elements in a row of G is (2k—1)n,. Thus. the relative overhead, over
n,—|

Torro hich s 0 for a, ~ 1 and less than

just storing the non-zero elements of G, is

|
=1 for all n,.
The right-hand-side of the Galerkin equations is b, which, aside from boundary terms, is
given by

b,+(p-(),,u = — f,‘z'. Bpx) +(f,”'. Bp), o=l . p=1‘ coon—k. (9.13)

We now need the boundary terms in (9.9). These come in (wo Havors, mixed and un-
mixed. Let M, (j), j=1.--- N. be the indices of upf’. similarly for Mg. Also, let C(M)
be the complement of M. that is. those i=I, : - - .n, which are not in the array M. similurly
for C(IM,). Finally, let r(i,j) = i+(j~1)n,. The boundary terms 8G for the Galerkin matrix
G are obtained from the equations

5, X (a,'(L) (9B L)+, By (L) V+a, M L)y,)+
jeCM)

‘V.{? ny
Tlap o (LY O CAL Y+ Oy (3B (L) 4y, By (L))))+

j=1 fo=

anﬁit,‘l (L)yML!/) I~

8ymil I (@R Cypy i By (RYH5,0, B (R) +a P (R)y,)) +
JjeCiMp)
Ntﬁ "ll
2(a"t‘}/)t‘f’ (R) (E (A,»(,R’y,”_p,ﬁ-C,[,f,’ (y,,,»,,_,,B,,_,X(R) + Y18 (R))))+
j=t (=1
a,}v};fja(R)yr(MRrjr_p) =
(9.14)
NALI nll
Sp‘l Z (8Gljyj +SG, /+"‘ij+n” } + 2(2(SG:Iyl+BGi;l+n"yl+n")+SG‘«MLU)yML‘J} M —
JjeC(M) je=l (=l
5/1‘71—1(z (5Gr'l.p’.r‘j.p—l|.yr(j_p—ll +80r(1Apl.r(/.p)yr!j_pP)+
jeCM g}
N‘G n

2(Z(BGr(/,pl‘r(/Apiyr(l,p’ +BGrli,p’,Hl,p—(lyrfl‘p—-(l)+

jm=bo gl

233 -

56,1,,p)_,(MRm.p)yru.p;)

where 8, is the Kronecker delta function. The boundary terms 8b for the right-hand-side b are
obtained from the equations

N N
8, o[£ (R = Tapdh i (RIviB | =8, 1| (L) = Tapsr) (L)yif| =

J=1 =l

sp«n—kain—l)nu —ap.ISbi .

With the above boundary terms (9.14) and (9.15) added on, the Galerkin matrix G and
right-hand-side b are ready to do a fully mixed problem, that is, one with no Dirichlet BC’s.
Let D'E'(i), i=l,--" ,nlf‘D, be the indices of upt'. similarly for DR’ Then the
EL (DL ())* Galerkin equation is replaced by the Dirichlet BC equation for u,,, (L).
=1, .n; . The ER (DR(i)) +n—k—1)n,™ Gulerkin equation is replaced by the Diri-
chlet BC equation for u g, (R), i=l. - ‘n,,'g’. This completes the “urmulation of the

Galerkin equations. The result is a system of linear algebraic equations of the form
Gy=b ‘ {9.16)

for the B-spline coefficients y (9.10) of the solution u of (9.8). The matrix G is
n, (n—k)Xn, (n—k) with a band-width of (2kn,—1). see (9.12). Thus, the system (9.16) may
be solved in roughly n, (n—k) (2 k n,~1) k n, arithmetic operations [55], and the B-spline
Galerkin solution can be obtained quite efficiently.

The Galerkin system (9.16) is based on the computation of many integrals. These
integrals are computed with Gauss-Legendre quadrature {42]. If we let O be the minimum
order of all u; in the ODE system (9.8), then we wish to compute

fB;wa)Bq(x) dx
L

exactly [42] with an m,-point Gauss-Legendre quadrature rule. This is best accomplished for

[k if 0=0
mq=

k=1 if 0 >0 17
Using such a quadrature rule, the Galerkin system (9.16) may be formed in roughly
4(n—k)k*n’m, (9.18)
operations, while the rigﬁl-hand-side b alone may be computed in roughly
2(n—k)kn, m, 9.19)

operations. If the LU factorization of G and the right-hand-side b are known, then the solution
y may be computed in roughly

(n=k) n, 3k n,—2) : (9.20)

operations.

(71

(8

(91

(10]

(rel
(12]
(13]
[14]
(15]

(16]

(17]
(18]
(19]

(20]

Bibliography

D.H. Auston and N.L. Schryer, "High-Speed Photoconductive Measurements of Auger
Recombination in Semiconductors”, to be published.

C. de Boor, "On Uniform Approximation by Splines”, J. Approx. Th. 1, 219-235(1968).
C. de Boor, "On Calculating with B-splines", J. Approx. Th. 6, 50-62(1972).

R. Bulirsch and J. Stoer, "Fehlerabschatzungen und Extrapolation mit rationalen Funk-
tionen bei Verfahren vom Richardson-Typus", Numer. Math. 6, 413-427(1964).

R. Bulirsch and J. Stoer, "Numerical Treatment of Ordinary Differential Equations by
Extrapolation Methods", Numer. Math. 8, 1-13(1966).

R. Bulirsch and J. Stoer, "Asymptotic Upper and Lower Bounds for Results of Extrapola-
tion Methods", Numer. Math. 8, 93-104(1966).

J.H. Cerutti and S.V. Parter. "Collocation Methods for Parabolic Partial Differential Equa-
tions in One Space Dimension”, Numer. Math. 26, 227-254(1976).

P. G. Ciarlet, M.H. Schultz and R.S. Varga, "Numerical Methods of High-Order Accuracy
for Nonlinear Boundary Value Problems I. One Dimensional Problem.”, Numer. Math. 9,
394-430(1967).

P. G. Ciarlet, M.H. Schultz and R.S. Varga, "Numerical Methods of High-Order Accuracy

for Nonlinear Boundary Value Problems 1l. Nonlinear Boundary Conditions". Numer.
Math. 11, 331-345(1968).

P.G. Ciarlet, M.H. Schultz and R.S. Varga, "Numerical Methods of Higher-Order Accu-
racy for Nonlinear Boundary Value Problems IIl. Eigenvalue Problems", Numer. Math.
12, 120-133(1968).

R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. |, Interscience, New
York, 1966.

H.B. Curry and [.J. Schoenberg, "On Polya Frequency Functions 1V: The Fundamental
Spline Functions and their Limits", J. of Anal. and Math. 17, 71-107(1966).

G. Dahlquist, "A Special Stability Problem for Linear Multistep Methods", BIT 3, 27-
43(1963).

G. Dahlquist, "Stability Questions for Some Numerical Methods for Ordinary Differential
Equations”, Proc. Symp. for Applied Math. 15, 147-158(1963).

J. Douglas and T. DuPont, "A Finite Eiement Collocation Method for Quasilinear Para-
bolic Equations", Math. Comp. 27, 17-28(1973).

J. Douglas, T. DuPont and M.F. Wheeler, "An L., Estimate and a Superconvergence
Result for A Galerkin Method For Elliptic Equations Based on Tensor Products of Piece-
wise Polynomials", RAIRO 8, 61-66(1974).

T. DuPont, "A Unified Theory of Superconvergence for Galerkin Methods for Two-Point
Boundary Problems", SIAM J. Numer. Anal. 13, 362-368(1976).

W.H. Enright. T.E. Hull and B. Lindberg, "Comparing Numerical Methods for Suff Sys-
tems of Ordinary Differential Equations”, BIT 15, 10-48(1975).

G. Fix, "Higher-Order Rayieigh-Ritz Approximations”, J. Math. and Mech. 18, 645-
657(1969).

G. Forsythe and C. Moler, Computer Solution of Linear Algebraic Systems, Prentice-
Hall, New York. 1967.

(21]
[22]
(23]
(24]

[25]
(26]

[27)

(28]

[29]
(30]

[37]
(38]
(391
[40]
(411
[42]

(43]

B-2

G. Forsythe and W. Wasow, Finite Difference Methods for Partial Differential Equa-
tions . Wiley, New York, 1959,

P.A. Fox, "A Comparative Study of Computer Programs for Integrating Differential Equa-
tions", Comm. ACM 15, 941-948(1972).

P.A. Fox, A.D. Hall and N.L. Schryer, "The PORT Library Mathematical Subroutine
Library", Bell Laboratories Computing Science Technical Report #47. 1976.

C.W. Gear. "The Automatic Integration of Ordinary Differential Equations”, Comm. ACM
14, 176-179(1971).

S.W. Golomb and L.D. Baumert, "Backtrack Programming”, J. ACM 12, 516-524(1965).
W.B. Gragg, "Repeated Extrapolation to the Limit in the.Numerical Solution of Ordinary
Differential Equations”, Thesis, UCLA (1963).

W.B. Gragg, "On Extrapoldtlon Algorithms for Ordinary Initial leue Problems” SIAM J.
Num. Anal. 2, 384-403(1965).

W.B. Gragg, "Lecture Notes on Extrapolation Methods". presented at the SIAM National
Meeting, Washington, June 1971, and at the Conference on Ordinary Differential Equa-
tions, Dundee, Scotland, August, 1971,

A.D. Hall and S.1. Feldman, "EFL, an Extended FORTRAN Language", in preparation.
T.E. Hull, W.H. Enright, B.M. Fellen and A.E. Sedgwick, "Comparing Numerical Methods
for Ordinary Differential Equations”, Techmul Report 29, 1971, Department of Computer
Sciences, University of Toronto.

H. lkezi, A.L. Simons, K.F. Schwarzenegger and T.S. Kamimura, "Nonlinear Self-
Modulation of lon-Accoustic Wave Packets", to be submitted to Physics of Fluids.

B.W. Kernighan, "RATFOR - A Preprocessor for a Rational Fortran", Software-Practice
and Experience 5, 395-406(1975).

J. McKenna and N.L. Schryer, "Analysis of Field-Aided Charge-Coupled Device
Transfer", BSTJ 54, 667-685(1975). :

P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Mc Graw-Hill, New
York, 1953. '

R.D. Richtmeyer and K.W. Morton, Difference Metheds for Initial Value Problems,
Interscience, New York, 1967.

B.G. Ryder and A.D. Hall, "The PFORT Verifier", Bell Laboratories Computer Science
Technical Report #12, 1975.

R.A. Sack and A.F Donovan, "An Algorithm for Gaussian Quadrature given Moditied
Moments", Numer. Math. 18, 465-478(1972).

I.W. Sandberg and H. Shichman, "Numerical Integration of Systems of Stiff Nonlinear
Differential Equations”, BSTJ 47, 511-528(1968).

N.L. Schryer and L.R. Walker, "The Motion of 180° Domain WaHs in Uniform dc¢ Mag-
netic Fields", J. Appl. Physics 45, No. 12, 5406-5421(1974).

N.L. Schryer, "An Extrapolation Step-Size and Order Monitor for use in Solving
Differential Equations", Proceedings ACM National Meeting, San Diego, 1974,

N.L. Schryer, "An Extrapolation Step-Size and Order Monitor for use in Solving
Differential Equations”, in preparation.

N.L. Schryer, "A Tutorial on Galerkin's Method. using B-splines. for Solving Differential
Equations", Bell Laboratories Computing Science Technical Report #52, 1976.

M.H. Schultz, "The Galerkin Method for Non-Self-Adjoint Differential Equations", J.
Math. Anal. and Appl. 28, 647-651(1969).

[44]
[45]
{46]
(47]
(48]

[49)

(501
(5]
(52]
(53]
(54]
(55]
(56]

[57)

B-3

M_H. Schultz, "The Condition of a Class of Rayleigh-Ritz-Galerkin Matrices", Bull. AMS
76, 840-844(1970).

R.F. Sincovec and N.K. Madsen, "Software for Nonlinear Partial Differential Equations”,
ACM Trans. on Math. Software 1, 232-260(1975).

R.F. Sincovec and N.K. Madsen, "PDEONE, Solutions of Systems of Partial Differential
Equations", ACM Trans. on Math. Software 1, 261-263(1975).

R.F. Sincovec and N.K. Madsen, PDEPACK and COLPACK, Scientific Computing Con-
sulting Services, P.O. Box 335, Manhattan, Kansas, 66502,

H.J. Stetter, "Asymptotic Expansions for the Error of Discretization Algorithms for Non-
Linear Functional Equations”, Numer. Math. 7, 18-31(1965).

J. Stoer, "Extrapolation Methods for the Solution of Initial Value Problems and their Prac-
tical Realization", Conference on the Numerical Solution of Ordinary Differential Equa-
tions, University of Texas at Austin, 1972.

G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice-Hall. New
York, 1973.

Lars Wahlbin, "Error Estimates for a Galerkin Method for a Class of Model Equations for
Long Waves", Numer. Math. 23, 289-303(1975).

D.D. Warner, "A Partial Derivative Generator", Bell Laboratories Computing Science
Technical Report #28, April, 1975.

M.F. Wheeler, "L, Estimates of Optimal Orders for Galerkin Methods for One-
Dimensional Second Order Parabolic and Hyperbolic Equations”, SIAM J. Num. Anal. 10,
908-913(1973).

J.H. Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, New York, 1963.
J.H. Wilkinson and C. Reinsch, Handbook for Automatic Computation (II): Linear
Algebra Springer-Verlag, New York, 1971,

L.O. Wilson and N.L. Schryer, "Flow Between a Stationary and a Rotating Disk with Suc-
tion", J. Fluid Mech., 85, 479-496(1978).

T. Yu, "Comparison of Numerical Methods for Ordinary Differential Equations”, Tech.
Report CNA-73, 1973, University of Texas at Austin.

Appendix |

B-splines
The way in which the approximate numerical solution is to be represented is a very
important decision. The choice of representation affects the entire solution process.
Specifically, we would like to choose a space of functions, out of which we will try to obtain the
element closest to the solution. This space should have several nice properties, including being
(1) easy 1o work with and (2) capable of approximating the solution accurately.

Such a representation exists - expansion in B-splines of order k [2.3.12]. This is a
method for representing functions by piecewise polynomials, that is, polynomials of degree k—1
or less over each sub-interval of a mesh or grid. Here the integer k is any number k 2 2 the
user desires. The piecewise polynomial representation is required to satisfy certain continuity
restrictions at the end points of each mesh sub-interval. Specifically, let w={x,, - - - CXn)
where L=x, < x; £ -+ < xy =R, be a grid on the interval (L,R). Let m, be the multi-
plicity of x;. or the number of times x; appears in the list 7. The space of B-splines of order &
defined on the mesh = is defined to be the collection of all functions f

(A1.1) which are polynomials of degree < k on each interval (x; . x,) for i=Il, ... N—I,

(A1.2) for which d* f(x,)/dxk_l—m' exists and is continuous at each x;, for i=I, ... N,
when viewed as a function defined only on [L.R], and

(A1.3) for which f = 0 outside [L .R].

The multiplicity m; of a point x; is restricted to be in the range | < m; < k. For m,=I
we have d"_zf/dx"_2 continuous at x;. This is the most continuity which can be imposed at x,
without making f a polynomial of degree k—1 on (x,_,.x,). For m,=k the condition that
d~'f/dx~' be continuous is interpreted to mean that f is continuous from the right (but not
necessarily from the left) at x = x,, for x, < R. and continuous from the left if x, = R. This
means that B-splines are continuous at the end points of the mesh when viewed as functions
defined only on [L,R]. This collection of functions is denoted by B, ,. These B, , spaces
have rather nice approximation properties, as summed up by deBoor [2]. in the case when
my =k = my:

=l=m,

Theorem 1

Let f be any function with f'" through f'*’ continuous on [L ,R], where f'' denotes

the j™ derivative of f. Let h= IMa)c | x,,1 —x, | be the largest mesh interval length.
-, .., N-=I

Then there is an element g of B, , so that
£ () =g (x) || € Clk,f) h*~

for 0 € j € k. where C(k,f) represents a constant which depends only upon k and f. but
not h.

That is, as h—0. the error in the best B-spline upproximation to f goes to zero like h*:
the error in its derivative behaves like A*~'; etc.

Note that this theorem makes no assumption about the relative spacing of the mesh
points of m in order to get A* error. In many problems. the ability to grade the mesh with B-
splines and still get h* error is a decided advantage.

In practice, k is usually taken to be 4, 6, 8 or cven 10, depending on what the function f
looks like and how much accuracy is desired. k is usually, but not always. taken o be even
due to the rather natural way in which such splines arise and their smoothing properties when
used to approximate functions described by discrete data [2]. Typically, the more accuracy
desired, the larger the value of k should be. For example, if k=8 and the mesh length A is

Al-2

halved, then Theorem 1 indicates that the error should decrease by a factor of 2% = 256. How-
ever, the work needed to solve a problem using POST is O(NKY). Thus. a k=8 solution will
cost 8 times as much as a k=4 solution for the same mesh. Hence, the optimal &k results from
minimizing O (N, k'), where N, is the number of mesh points needed to solve the problem to
the desired accuracy using a k order B-spline. This optimization is highly problem dependent.

A computationally convenient basis exists for the spaces B, ,. The dimension of B, is
N—k and the basis consists of elements B,{x), i=1,..., N—k. A compiete description of the
B, is given in [12] and [3]. Briefly, when the multiplicities of the first and last mesh points are
both k, so that

X = o=x
and

XN—k+1 = "7 = XN

then the main properties of the B,(x)} follow

(A1.4) Each B, is non-zero only on [x,, x4,] and is identically zero clsewhere, as well as ut
Xio ..o X_pand X4p40, ..., Xy, even if they are in [x; . x4).

(A1.5) The sum Bj{x)+ - +By_,(x) is identically one.
(A1.6) Each B, obeys 0 € B,(x) £ | everywhere and possesses only one maximum.

The convergence result of Theorem 1 is independent of the multiplicities m, of the inte-
rior points x; (k < i € N—k)} of the mesh. Usually, for smooth functions f, m,=1 is taken
for all these interior (that is, strictly between L and R) mesh points.

The end points of the mesh typically have multiplicity k since the function f usually has
Sf(L) # 0 and f(R) # 0, and the elements of B, , cannot be non-zero at L and R, unless
my =k = my because of (Al.2) and (A1.3). In fact, relations (A1.2)-(A1.5) show that the only
B, which are not zero at L and R are B) and By_,. and these values are simply B,(L) = | and
BN—R(R) = |.

If the function f has a discontinuity in its j* derivative, at x,, then m, =k—j is chosen
because this allows the elements of B, , to have the same behavior. If a smaller multiplicity
were chosen, the j# derivative of all the elements of B, , would be continuous at x;, and the
best fit to f from B, , would not be very good at x;.

Another important property of B-splines is their numerical stability or condition. Since any
N—k
B-spline f is of the form f= Y a, B, and each B, obeys 0 < B, <1 we see that if ||f]] is

=i
small compared with |la]|, then many significant digits are lost when computing f from
a,. - .ay_, in floating-point arithmetic [54]. Specifically,

N-k
d < Log(lall /1 X a, B, (A1.7)

=

decimal digits are lost, due to cancellation, in evaluating f. In (2] de Boor shows that

1%a, 811 > C,llall (ALS)

(=]
where C, is a constant depending only upon k, and therefore
d < Logy(Coh.

In particular, he shows for a uniform mesh, one where all the mesh intervals have the same
length, that

C, = 1073, (A1.9)

Thus, when evaluating a B-spline defined on a uniform, or nearly uniform, mesh, we would

Al-3

expect to lose no more than about k/5 decimal digits. This is a very satisfactory result since it
indicates that, at least for uniform meshes. the conditioning of the B-spline basis is independent
of the size of the mesh.

Appendix 2

Extrapolation.

The problem treated in [5] and [26.27] is the numerical solution of the canonical form
ODE initial value problem

dx
i (r. x) a t

(A2.1)
x(a) = x,

where (. x) is some smooth vector-valued function of r and x. A brief outline of the ideas
developed in those papers follows.

There are many basic differencing schemes for solving (A2.1), such as Gragg’s moditied
mid-point rule [26.27], backwards-Euler methods [38] and Crank-Nicholson [18.35]. Most of
these methods have the property [48] that if they take N time-steps to go from f, to ¢, and
result in an approximation to x(#;) which we shall denote by T(#) where h = (1y—1))/N. then

T(h) =T+2Tjh” (A2.2)
j=1
where T = x(r,), y is a positive constant depending on the basic ditference scheme used, and

the T; are unknown constant vectors independent of h. For Gragg’s modified mid-point rule

or Crank-Nicholson y = 2 and for backwards-Euler methods y = I.
Let a sequence of A's be defined by

h, = hy/N,, i=1,2.3,--. (A2.3)

where hy = t;—t, and the N, form a monotone increasing sequence of positive integers.
Bulirsch and Stoer showed in [4] that given an operator T(h) satisfying (A2.2), and such a
sequence #;, then the value at A=0 of the polynomial of degree m which interpolates T(h4,) for
i=0, - -+ .m, is given by T,(Z, which is determined from the recursion

T{=T(h) for 0<i<m
(A2.4)

T, =T/t +(T/H —T,;_,)/l(h,/h,+k)"— l]

for 0<i<m—k and 1 <k <m. If the T} are organized into a lozenge of the form
T(hy) = To
T(h) = T
T(hy) = T¢
T(hy) = T3
Ty =14 T 1)
T(hs) = T T}

T}
T!
T?

Moy

| 0

T?

then (A2.4) expresses each element of the k" column (k>0) in terms of its two neighbors in
column k—1. A similar result is established for interpolation by rational functions [4].

It is also possible to estimate the error in each element of the lozenge [6]. In fact. (6]
shows that for sufficiently small A,

A2-2

N |
(hl/hHAH'y_l

T, =Tl = |l I!U*'—T;l (A2.5)

and we cun estimate the error €, = IT;—T| in T{. We also know from {61 that for sutficiently
small A,
€, = hEd,(h - hy) (A2.6)

where the d, are constant vectors, y is the order of the basic process being extrapolated and 8
is a positive constant. When extrapolating Gragg's modified mid-point rule or Crank-
Nicholson, y =2 and B8 = 1. When extrapolating a Backwards-Fuler time differencing process.
y =1 =8 Thus, we can both estimate the accuracy of each eclement in the lozenge and tell
how rapidly cach column in the lozenge is converging.

In (A2.4) m is called the level of extrapolation, while from (A2.5) we see that the order
in column k.is (k+1)y. Thus. by extrapolating the results of a basic ordinary differential cqua-
tion solver. a process of arbitrarily high order can be obtained. The value Ay = t,— 1, 18
referred to as the time-step while the A, are called sub-steps. Fxtrapolation approximates the
x (r,) values accurately. but does not accurately approximate x(¢t+nh;) for 0<n<N.

Appendix 3

Wish-List
This section describes several improvements which will, could or may be made in POST.

The improvements range from better human engineering (easier use) to making the algorithm
more efficient and extending it to solve more general problems.

Better Nonlinear Equation Solver

The first major improvement which will be made is o usc a better nonlinear equation
solver. The current scheme re-computes the Jacobian matrix (the partials da;/du;. etc.) at
every time-step. This is quite unnecessary and rather expensive, as a comparison of the opera-
tion counts (9.18)-(9.20) shows.

For linear problems, the user will be able 10 say that the problem is linear and that the
coefficients of u, u,, u,, u,, v, v, are all functions of x alone (no dependence on). In this
case POST should run substantially faster because the Jacobian need only be computed once
during the entire solution process.

For nonlinear problems, a scheme will be implemented for keeping an "old” value of the
Jacobian over as many time-steps as the Jacobian can provide an effective quasi-Newton itera-
tive solution of the nonlinear equations. This scheme will use the fact that, in general, the
convergence of a quasi-Newton method with an "out-of-date” (inaccurate) Jacobian is linear
rather than quadratic. The possible run-time improvement using such a scheme is kn,. the
ratio of the cost of computing the Jacobian (9.18) to the cost of just computing the right-hand-
side (9.19).

Numerical Jacobians

Another possible improvement would be the automatic numerical computation of the
Jacobian matrix from the values of a and f. This is not a high-priority item for three reasons.
The first is that it is usually an easy matter for the user to compute, by hand, the necessary par-
tial derivatives. The second reason is that the partial derivative generator PDGEN {52] may be
used to automatically compute the Jacobian when it s too difficult to do by hand. The third
reason is that numerical differentiation is a "black-art” rather than a science, and its use could
compromise the robustness of POST. Anyone feeling that numerical Jacobians are a necessity
should contact the author, but be ready for an argument.

Special Entry for PDE-BC Problems

Another entry point can be made in POST to remove the ODE variable parameters from
the calls to Posts, AF, B and Handle. This would make the use of POST to solve PDE-BC
problems a little easier to explain and accomplish. Once the package has firmed-up a bit, such
an overlay will undoubtedly be provided.

More General BC's

Problems where the BC’s involve giving both u and u, at either L or R cannot be han-
dled currently, except by either making u, (¢, x) a new PDE variable (which increases the cost
a lot), or by making u(¢, L) (or ul¢, R)) an ODE variable (which increases the cost a little).
Such BC’s may arise occasionally and it would be wise to handle them cleanly and efficiently.
However, most problems of this type are ill-posed {35], so implementation of this feature is not
a high-priority item.

Non-local Terms in the PDE

A radical improvement in the capabilitics of POST would be 1o allow non-local terms in
the PDE (AF). This would allow integro-differential cquations to be sotved. Theorctically,
such problems can currently be solved using the ODE facility of POST, however. the cost is
prohibitive. To do it right would requirc that the a und f terms in the PDE also have parame-
ters u(r, (1)), see (5.4). The BC's and ODE's have such non-locul terms and it would be
mathematically pretty if the AF term could also. However, the Jacobian matrix, instead of
being tanded. would be full and dense in general. This would significantly increase the running
time for such problems. but also allow solution of a much broader range of problems Non-
local PDE terms can be added fairly casily to POST, but their implementation awaits suthicient
user demand.

Other Spatial Discretization Techniques

B-splines are used in the current implementation due to their excellent approximation
properties (see Appendix 1) and the fact that there is a local basis for them which vields banded
Jacobians. This choice is made for general robustness, reliability and efficiency. However. for
particular problems there may be other {non-local) approximation spaces which, although they
vield dense matrices, are very efficient because very few basis functions are needed to uccu-
rately approximate the solution. It is conceivable that a package allowing the user to specify the
basis functions. and the way to compute the Galerkin integrals, could be created and even made
efficient. Such a project awaits sufficient user demand.

Banded PDE Systems

There are situations where the PDE’s themselves are banded. that is. a, and f, only
depend on w; for j "near” i. Advantage can be taken of this structure to decrease the amount
of storage. and run-time. needed by POST. This is a low-priority ilem.

More Structure in the PDE
An equation of the form [S1]

Pu), = Qlu),
is really of the form (2.1)-(2.2) since it is equivalent to
Pluwu =Qu),.

However. it may be quite awkward to find P" and P” for use in POST. The form of the PDV
could be taken to be

a+bx+Cl+drx=0 ,
to accommodate such problems. However, the calling sequence to the new "AF". would be

horrendous, having 14 more arguments! Such a grotesquerie will be produced only under great
pressure.

Collocation Methods

Collocation-Least-Squares methods [7.15]). using B-splines. could be used to solve o PDE
svstem of the form

glt. x., u u u, u, U, Uy v, v,) =0

Such techniques force the PDE to hold at a finite number of points in cach B-spline mesh inter-
val. There are several advantages to such techniques. First, they would permit solution of
more general problems than that allowed by the self-adjoint form (2.1). The code would also
be simpler and cusier to use, due to the reduced number of arguments. Finally. for a given B-
spline mesh, collocation methods are aboul twice as fast as Galerkin's method. However. for
some second order problems where the spatial derivatives u'"" of the solution grow like ' for

A3-3

some constant a, the error for collocation is a factor of «a greater than that for Galerkin. This
happens because the divergence-form allows one level of spatial differentiation to be done
analytically, using integration by parts (see section 9). Thus, for problems where the solution is

,’ "kinky", collocation may be much more inaccurate than Galerkin, for the same B-spline mesh.
This would seriously compromise the robustness of POST. Should demand arise for such a col-
location package (should someone find an interesting PDE which is not in divergence-form), it
could be produced quite easily from the code for the existing POST package.

