
AT&T Bell Laboratories

Murray Hill, New Jersey 07974

Computing Science Technical Report No. 54

Troff User’s Manual†

Joseph F. Ossanna

Brian W. Kernighan

Revised November, 1992

Troff User’s Manual†

Joseph F. Ossanna

Brian W. Kernighan

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

Revised November, 1992

Troff User’s Manual†

Joseph F. Ossanna
Brian W. Kernighan

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Introduction

Troff and nroff are text processors that format text for typesetter- and typewriter-like terminals,
respectively. They accept lines of text interspersed with lines of format control information and format the
text into a printable, paginated document having a user-designed style. Troff and nroff offer unusual free-
dom in document styling: arbitrary style headers and footers; arbitrary style footnotes; multiple automatic
sequence numbering for paragraphs, sections, etc; multiple column output; dynamic font and point-size
control; arbitrary horizontal and vertical local motions at any point; and a family of automatic overstriking,
bracket construction, and line-drawing functions.

Troff produces its output in a device-independent form, although parameterized for a specific device;
troff output must be processed by a driver for that device to produce printed output.

Troff and nroff are highly compatible with each other and it is almost always possible to prepare
input acceptable to both. Conditional input is provided that enables the user to embed input expressly des-
tined for either program. Nroff can prepare output directly for a variety of terminal types and is capable of
utilizing the full resolution of each terminal. A warning, however: nroff necessarily cannot support all fea-
tures of troff. Within that limitation, it is the same as troff, and in fact there is only a single program,
invoked by two different names.

Background to the Second Edition

Troff was originally written by the late Joe Ossanna in about 1973, in assembly language for the
PDP-11, to drive the Graphic Systems CAT typesetter. It was rewritten in C around 1975, and underwent
slow but steady evolution until Ossanna’s death late in 1977.

In 1979, Brian Kernighan modified troff so that it would produce output for a variety of typesetters,
while retaining its input specifications. Over the decade from 1979 to 1989, the internals have been mod-
estly revised, though much of the code remains as it was when Ossanna wrote it.

Troff reads parameter files each time it is invoked, to set values for machine resolution, legal type
sizes and fonts, and character names, character widths and the like. Troff output is ASCII characters in a
simple language that describes where each character is to be placed and in what size and font. A post-
processor must be written for each device to convert this typesetter-independent language into specific
instructions for that device.

The output language contains information that was not readily identifiable in the older output. Most
notably, the beginning of each page and line is marked, so post-processors can do device-specific optimiza-
tions such as sorting the data vertically or printing it boustrophedonically, independent of troff.

Capabilities for graphics have been added. troff now recognizes commands for drawing diagonal
lines, circles, ellipses, circular arcs, and quadratic B-splines; there are also ways to pass arbitrary informa-
tion to the output unprocessed by troff.

A number of limitations have been eased or eliminated. A document may have an arbitrary number
of fonts on any page (if the output device permits it, of course). Fonts may be accessed merely by naming

†This is a version of the original troff reference manual, revised several times by B. W. Kernighan.

- 2 -

them; ‘‘mounting’’ is no longer necessary. There are no limits on the number of characters. Character

height and slant may be set independently of width.

The remainder of this document contains a description of usage and command-line options; a sum-
mary of requests, escape sequences, and pre-defined number registers; a reference manual; tutorial exam-
ples; and a list of commonly-available characters.

Acknowledgements

Joe Ossanna’s troff remains a remarkable accomplishment. For fifteen years, it has proven a robust
tool, taking unbelievable abuse from a variety of preprocessors and being forced into uses that were never
conceived of in the original design, all with considerable grace under fire.

The current version of troff has profited from significant code improvements by Jaap Akkerhuis,
Dennis Ritchie, Ken Thompson, and Molly Wagner. Andrew Hume, Doug McIlroy, and Ravi Sethi made
valuable suggestions on the manual. I fear that the remaining bugs are my fault.

- 3 -

Usage
Troff or nroff is invoked as

troff options files
nroff options files

where options represents any of a number of option arguments and f iles represents the list of files contain-
ing the document to be formatted. An argument consisting of a single minus ‘-’ is taken to be a filename
corresponding to the standard input. If no filenames are given input is taken from the standard input. The
options, which may appear in any order so long as they appear before the files, are:

-N Run as nroff; default is troff.
-mname Read the macro file / usr / lib / tmac.name before the input f iles.
-Tname Specifies the type of the output device. Specific devices are site-dependent. For

troff, useful names include post (Postscript, the default), 202 (Linotron 202),
and aps (Autologic APS-5). For nroff , useful names include 37 for the
(default) Model 37 Teletype, 450 for the DASI-450 (Diablo Hyterm), lp for
‘‘dumb’’ line printer terminals (no half-line motions, no reverse motions, and
think for the HP ThinkJet printer.

-i Read standard input after the input files are exhausted.
-olist Print only pages whose page numbers appear in list, which consists of comma-

separated numbers and number ranges. A number range has the form N − M and
means pages N through M; a initial − N means from the beginning to page N; and
a final N − means from N to the end.

-nN Number first generated page N.
-raN Set number register a (one-character) to N.
-sN Stop every N pages. Nroff will halt prior to every N pages (default N = 1) to

allow paper loading or changing, and will resume upon receipt of a newline.
Troff will include a ‘‘pause’’ code every N pages; its meaning, if any, depends
on the output device.

-uN Set amount of emboldening for the bd request to N.
-Fpath Look in directory path for font information; default is /usr/lib/font for

troff and /usr/lib/term for nroff.

troff Only
-a Send a printable (ASCII) approximation of the results to the standard output.

nroff Only
-e Produce equally-spaced words in adjusted lines, using full terminal resolution.
-h Use tabs instead of spaces to speed up printing.
-q Invoke the simultaneous input-output mode of the rd request.

Each option is a separate argument; for example,

troff -Tpost -ms -o4,6,8-10 f ile1 f ile2

requests formatting of pages 4, 6, and 8 through 10 of a document contained in the files named f ile1 and
f ile2, specifies the output device as a Postscript printer, and invokes the macro package -ms.

Various pre- and post-processors are available for use with nroff and troff. These include the equa-
tion preprocessor eqn (for troff only), the table-construction preprocessor tbl, and pic, ideal, and grap for
various forms of graphics. A reverse-line postprocessor col is available for multiple-column nroff output
on terminals without reverse-line ability; col expects the Model 37 Teletype escape sequences that nroff
produces by default.

- 4 -

Request Summary
In the following table, the notation ±N in the Request Form column means that the forms N, + N, or

− N are permitted, to set the parameter to N, increment it by N, or decrement it by N, respectively. Plain N
means that the value is used to set the parameter. Initial Values separated by ; are for troff and nroff
respectively. In the Notes column,

B Request normally causes a break. The use of ’ as control character (instead of
.) suppresses the break function.

D Mode or relevant parameters associated with current diversion level.
E Relevant parameters are a part of the current environment.
O Must stay in effect until logical output.
P Mode must be still or again in effect at the time of physical output.
T troff only; no effect in nroff.

v, p, m, u Default scale indicator; if not specified, scale indicators are ignored.

Request Initial If No
Form Value Argument Notes Explanation

1. General Information

2. Font and Character Size Control

.ps ±N 10 point previous E,T Point size; also \s±N.

.ss N 12/36m ignored E,T Space-character size set to N /36 em.

.cs F N M off - P,T Constant character space (width) mode (font F).

.bd F N off - P,T Embolden font F by N − 1 units.

.bd S F N off - P,T Embolden Special Font when current font is F.

.ft F Roman previous E Change to font F; also \fx, \f(xx, \fN.

.fp N F L R,I,B,...,S ignored - Mount font named F on physical position N ≥ 1;
long name is L if given.

3. Page Control
.pl ±N 11i 11i v Page length.
.bp ±N N = 1 - B,v Eject current page; next page number N.
.pn ±N N = 1 ignored - Next page number N.
.po ±N 1i; 0 previous v Page offset.
.ne N - N = 1 v D,v Need N vertical space.
.mk R none internal D Mark current vertical place in register R.
.rt ±N none internal D,v Return (upward only) to marked vertical place.

4. Text Filling, Adjusting, and Centering
.br - - B Break.
.fi fill - B,E Fill output lines.
.nf fill - B,E No filling or adjusting of output lines.
.ad c adj, both adjust E Adjust output lines with mode c; c = l ,r ,c ,b ,none
.na adjust - E No output line adjusting.
.ce N off N = 1 B,E Center next N input text lines.

5. Vertical Spacing
.vs N 12p; 1/6i previous E,p Vertical baseline spacing (V).
.ls N N = 1 previous E Output N − 1 v’s after each text output line.
.sp N - N = 1v B,v Space vertical distance N in either direction.
.sv N - N = 1v v Save vertical distance N.
.os - - - Output saved vertical distance.
.ns space - D Turn no-space mode on.
.rs - - D Restore spacing; turn no-space mode off.

6. Line Length and Indenting
.ll ±N 6.5i previous E,m Line length.
.in ±N N = 0 previous B,E,m Indent.
.ti ±N - ignored B,E,m Temporary indent.

- 5 -

7. Macros, Strings, Diversion, and Position Traps
.de xx yy - . yy = .. - Define or redefine macro xx; end at call of yy.
.am xx yy - . yy = .. - Append to a macro.
.ds xx string - ignored - Define a string xx containing string.
.as xx string - ignored - Append string to string xx.
.rm xx - ignored - Remove request, macro, or string.
.rn xx yy - ignored - Rename request, macro, or string xx to yy.
.di xx - end D Divert output to macro xx.
.da xx - end D Divert and append to xx.
.wh N xx - - v Set location trap; negative is w.r.t. page bottom.
.ch xx N - - v Change trap location.
.dt N xx - off D,v Set a diversion trap.
.it N xx - off E Set an input-line count trap.
.em xx none none - End macro is xx.

8. Number Registers
.nr R ±N M - u Define and set number register R; auto-increment by M.
.af R c arabic - - Assign format to register R (c = 1 ,i ,I ,a ,A).
.rr R - - - Remove register R.

9. Tabs, Leaders, and Fields
.ta Nt . . . 0.5i; 0.8n none E,m Tab settings; left-adjusting, unless t = R (right), C (centered).
.tc c none none E Tab repetition character.
.lc c . none E Leader repetition character.
.fc a b off off - Set field delimiter a and pad character b.

10. Input and Output Conventions and Character Translations
.ec c \ \ - Set escape character.
.eo on - - Turn off escape character mechanism.
.lg N on; - on T Ligature mode on if N > 0.
.ul N off N = 1 E Underline (italicize in troff) N input lines.
.cu N off N = 1 E Continuous underline in nroff; in troff, like ul.
.uf F Italic Italic - Underline font set to F (to be switched to by ul).
.cc c . . E Set control character to c.
.c2 c ’ ’ E Set no-break control character to c.
.tr abcd.... none - O Translate a to b, etc., on output.

11. Local Horizontal and Vertical Motions, and the Width Function

12. Overstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

13. Hyphenation.
.nh hyphenate - E No hyphenation.
.hy N hyphenate hyphenate E Hyphenate; N = mode.
.hc c \% \% E Hyphenation indicator character c.
.hw word . . . ignored - Add words to hyphenation dictionary.

14. Three-Part Titles.
.tl ′ l ′c ′r ′ - - Three-part title; delimiter may be any character.
.pc c % off - Page number character.
.lt ±N 6.5i previous E,m Length of title.

15. Output Line Numbering.
.nm ±N M S I off E Number mode on or off, set parameters.
.nn N - N = 1 E Do not number next N lines.

16. Conditional Acceptance of Input
.if c any - - If condition c true, accept any as input;

for multi-line, use \{any\}.
.if !c any - - If condition c false, accept any.
.if N any - u If expression N > 0, accept any.
.if !N any - u If expression N≤0 [sic], accept any.
.if ′s1 ′s2 ′ any - - If string s1 identical to s2, accept any.
.if !′s1 ′s2 ′ any - - If string s1 not identical to s2, accept any.

- 6 -

.ie c any - u If portion of if-else; all above forms (like if).

.el any - - Else portion of if-else.

17. Environment Switching
.ev N N = 0 previous - Environment switch (push down).

18. Insertions from the Standard Input
.rd prompt - prompt=BEL - Read insertion.
.ex - - - Exit.

19. Input/Output File Switching
.so f ilename - - Switch source file (push down).
.nx f ilename end-of-file - Next file.
.sy string - - Execute program string. Output is not interpolated.
.pi string - - Pipe output to program string.
.cf f ilename - - Copy file contents to troff output.

20. Miscellaneous
.mc c N - off E,m Set margin character c and separation N.
.tm string - newline - Print string on terminal (standard error).
.ab string - newline - Print string on standard error, exit program.
.ig yy - . yy = .. - Ignore input until call of yy.
.lf N f - - Set input line number to N and filename to f.
.pm t - all - Print macro names, sizes; if t present, print only total of sizes.
.fl - - B Flush output buffer.

21. Output and Error Messages

22. Output Language

23. Device and Font Description Files

Alphabetical Request and Section Number Cross Reference

ab 20
ad 4
af 8
am 7
as 7
bd 2
bp 3
br 4
c2 10
cc 10

ce 4
cf 19
ch 7
cs 2
cu 10
da 7
de 7
di 7
ds 7
dt 7

ec 10
el 16
em 7
eo 10
ev 17
ex 18
fc 9
fi 4
fl 20
fp 2

ft 2
hc 13
hw 13
hy 13
ie 16
if 16
ig 20
in 6
it 7
lc 9

lg 10
lf 20
ll 6
ls 5
lt 14
mc 20
mk 3
na 4
ne 3
nf 4

nh 13
nm 15
nn 15
nr 8
ns 5
nx 19
os 5
pc 14
pi 19
pl 3

pm 20
pn 3
po 3
ps 2
rd 18
rm 7
rn 7
rr 8
rs 5
rt 3

so 19
sp 5
ss 2
sv 5
sy 19
ta 9
tc 9
ti 6
tl 14
tm 20

tr 10
uf 10
ul 10
vs 5
wh 7

- 7 -

Escape Sequences for Characters, Indicators, and Functions

Section Escape
Reference Sequence Meaning

10.1 \\ \ prevents or delays the interpretation of \
10.1 \e Printable version of the current escape character.
2.1 \’ ´ (acute accent); equivalent to \(aa
2.1 \‘ ` (grave accent); equivalent to \(ga
2.1 \– – Minus sign in the current font
7. \ . Period (dot) (see de)

11.1 \space Unpaddable space-size space character
11.1 \0 Digit width space
11.1 \| 1/6 em narrow space character (zero width in nroff)
11.1 \ˆ 1/12 em half-narrow space character (zero width in nroff)

4.1 \& Non-printing, zero width character
10.6 \! Transparent line indicator
10.8 \" Beginning of comment; continues to end of line
13. \% Default optional hyphenation character
2.1 \(xx Character named xx
7.1 *x , *(xx Interpolate string x or xx
7.3 \$N Interpolate argument 1≤N≤9
9.1 \a Non-interpreted leader character

12.3 \b’abc...’ Bracket building function
4.2 \c Connect to next input text
2.1 \C’xyz’ Character named xyz

11.1 \d Downward 1/2 em vertical motion (1/2 line in nroff)
12.5 \D’c...’ Draw graphics function c with parameters . . .; c = l ,c ,e ,a ,˜
2.2 \fx , \f(xx , \fN Change to font named x or xx, or position N
8. \gx , \g(xx Format of number register x or xx

11.1 \h’N’ Local horizontal motion; move right N (negative left)
2.3 \H’N’ Height of current font is N

11.3 \kx Mark horizontal input place in register x
12.4 \l’Nc’ Horizontal line drawing function (optionally with c)
12.4 \L’Nc’ Vertical line drawing function (optionally with c)
8. \nx , \n(xx Contents of number register x or xx
2.1 \N’N’ Character number N on current font

12.1 \o’abc...’ Overstrike characters a , b , c, ...
4.1 \p Break and spread output line

11.1 \r Reverse 1 em vertical motion (reverse line in nroff)
2.3 \sN , \s±N Point-size change function; also \s(nn, \s±(nn
2.2 \S’N’ Slant output N degrees
9.1 \t Non-interpreted horizontal tab

11.1 \u Reverse (up) 1/2 em vertical motion (1/2 line in nroff)
11.1 \v’N’ Local vertical motion; move down N (negative up)
11.2 \w’string’ Width of string
5.2 \x’N’ Extra line-space function (negative before, positive after)

10.7 \X’string’ Ouput string as device control function
12.2 \zc Print c with zero width (without spacing)
16. \{ Begin conditional input
16. \} End conditional input
10.8 \newline Concealed (ignored) newline

- \Z Z, any character not listed above

The escape sequences \\, \ ., \", \$, *, \a, \n, \t, \g, and \newline are interpreted in copy mode
(§7.2).

- 8 -

Predefined Number Registers

Section Register
Reference Name Description

3. % Current page number.
11.2 ct Character type (set by \w function).
7.4 dl Width (maximum) of last completed diversion.
7.4 dn Height (vertical size) of last completed diversion.
- dw Current day of the week (1-7).
- dy Current day of the month (1-31).

15. ln Output line number.
- mo Current month (1-12).
4.1 nl Vertical position of last printed text baseline.

11.2 sb Depth of string below baseline (generated by \w function).
11.2 st Height of string above baseline (generated by \w function).

- yr Last two digits of current year.

Predefined Read-Only Number Registers

Section Register
Reference Name Description

19. $$ Process id of troff or nroff.
7.3 .$ Number of arguments available at the current macro level.
5.2 .a Post-line extra line-space most recently used in \x’N’.
- .A Set to 1 in troff, if −a option used; always 1 in nroff.
2.3 .b Emboldening level.

20. .c Number of lines read from current input file.
7.4 .d Current vertical place in current diversion; equal to nl, if no diversion.
2.2 .f Current font number.

20. .F Current input file name [sic].
4. .h Text baseline high-water mark on current page or diversion.

11.1 .H Available horizontal resolution in basic units.
6. .i Current indent.
4.2 .j Current ad mode.
4.1 .k Current output horizontal position.
6. .l Current line length.
5.1 .L Current ls value.
4. .n Length of text portion on previous output line.
3. .o Current page offset.
3. .p Current page length.
7.5 .R Number of unused number registers.
- .T Set to 1 in nroff, if –T option used; always 0 in troff.
2.3 .s Current point size.
7.5 .t Distance to the next trap.
4.1 .u Equal to 1 in fill mode and 0 in nofill mode.
5.1 .v Current vertical line spacing.

11.1 .V Available vertical resolution in basic units.
11.2 .w Width of previous character.

- .x Reserved version-dependent register.
- .y Reserved version-dependent register.
7.4 .z Name [sic] of current diversion.

- 9 -

Reference Manual

1. General Explanation

1.1. Form of input. Input consists of text lines, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a control
character—normally . (period) or ’ (single quote)—followed by a one or two character name that speci-
fies a basic request or the substitution of a user-defined macro in place of the control line. The control
character ’ suppresses the break function—the forced output of a partially filled line—caused by certain
requests. The control character may be separated from the request/macro name by white space (spaces
and/or tabs) for aesthetic reasons. Names should be followed by either space or newline. Control lines
with unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means of an escape character,
normally \. For example, the function \nR causes the interpolation of the contents of the number register
R in place of the function; here R is either a single character name as in \nx, or a two-character name intro-
duced by a left-parenthesis, as in \n(xx.

1.2. Formatter and device resolution. Troff internally stores and processes dimensions in units that corre-
spond to the particular device for which output is being prepared; values from 300 to 1200/inch are typical.
See §23. Nroff internally uses 240 units/inch, corresponding to the least common multiple of the horizontal
and vertical resolutions of various typewriter-like output devices. Troff rounds horizontal/vertical numeri-
cal parameter input to the actual horizontal/vertical resolution of the output device indicated by the -T
option (default post). Nroff similarly rounds numerical input to the actual resolution of its output device
(default Model 37 Teletype).

1.3. Numerical parameter input. Both nroff and troff accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in points and V is the current verti-
cal line spacing in basic units.

_ ____________________________
Scale

Indicator Meaning_ ____________________________
i Inch
c Centimeter
P Pica = 1/6 inch
m Em = S points
n En = Em/2
p Point = 1/72 inch
u Basic unit
v Vertical line space V

none Default, see below_ ____________________________ 









































In nroff, both the em and the en are taken to be equal to the nominal character width, which is output-device
dependent; common values are 1/10 and 1/12 inch. Actual character widths in nroff need not be all the
same and constructed characters such as –> (→) are often extra wide. The default scaling is m for the
horizontally-oriented requests and functions ll, in, ti, ta, lt, po, mc, \h, \l, and horizontal coordi-
nates of \D; v for the vertically-oriented requests and functions pl, wh, ch, dt, sp, sv, ne, rt, \v, \x,
\L, and vertical coordinates of \D; p for the vs request; and u for the requests nr, if, and ie. All other
requests ignore any scale indicators. When a number register containing an already appropriately scaled
number is interpolated to provide numerical input, the unit scale indicator u may need to be appended to
prevent an additional inappropriate default scaling. The number, N, may be specified in decimal-fraction
form but the parameter finally stored is rounded to an integer number of basic units. Internal computations
are performed in integer arithmetic.

The absolute position indicator | may be prepended to a number N to generate the distance to the
vertical or horizontal place N. For vertically-oriented requests and functions, |N becomes the distance in
basic units from the current vertical place on the page or in a diversion (§7.4) to the vertical place N. For
all other requests and functions, |N becomes the distance from the current horizontal place on the input line

- 10 -

to the horizontal place N. For example,

.sp |3.2c

will space in the required direction to 3.2 centimeters from the top of the page.

1.4. Numerical expressions. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators +, -, /, ∗, % (mod), and the logical operators <, >, <=, >=, = (or ==), & (and),
: (or) may be used. Except where controlled by parentheses, evaluation of expressions is left-to-right;
there is no operator precedence. In the case of certain requests, an initial + or - is stripped and interpreted
as an increment or decrement indicator respectively. In the presence of default scaling, the desired scale
indicator must be attached to every number in an expression for which the desired and default scaling differ.
For example, if the number register x contains 2 and the current point size is 10, then

.ll (4.25i+\nxP+3)/2u

will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 3 ems.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ±N means that the argu-
ment may take the forms N, + N, or − N and that the corresponding effect is to set the parameter to N, to
increment it by N, or to decrement it by N respectively. Plain N means that an initial algebraic sign is not
an increment indicator, but merely the sign of N. Generally, unreasonable numerical input is either ignored
or truncated to a reasonable value. For example, most requests expect to set parameters to non-negative
values; exceptions are sp, wh, ch, nr, and if. The requests ps, ft, po, vs, ls, ll, in, and lt restore
the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character argu-
ments are indicated by a pair of lower case letters. Character string arguments are indicated by multi-
character mnemonics.

2. Font and Character Size Control

2.1. Character set. The troff character set is defined by a description file specific to each output device
(§23). There are normally several regular fonts and one or more special fonts. Characters are input as
themselves (ASCII), as \(xx, as \C’name’, or as \N’n’. The form \C’name’ permits a name of any
length; the form \N’n’ refers to the n-th character on the current font, whether named or not.

Normally the input characters ’, ‘, and - are printed as ‘, ’, and - respectively; \’, \‘, and \- pro-
duce ´, `, and –. Non-existent characters are printed as a 1-em space.

Nroff has an analogous, but different, mechanism for defining legal characters and how to print them.
By default all ASCII characters are valid. There are such additional characters as may be available on the
output device, such characters as may be able to be constructed by overstriking or other combination, and
those that can reasonably be mapped into other printable characters. The exact behavior is determined by a
driving table prepared for each device.

2.2. Fonts. Troff begins execution by reading information for a set of defaults fonts, said to be mounted;
conventionally, the first four are Times Roman (R), Times Italic (I), Times Bold (B), and Times Bold
Italic (BI) , and the last is a Special font (S) containing miscellaneous characters. These fonts are used in
this document. The set of fonts and positions is determined by the device description file, described in §23.

The current font, initially Roman, may be changed by use of the ft request, or by embedding at any
desired point either \fx, \f(xx, or \fN, where x and xx are the name of a font and N is a numerical font
position.

It is not necessary to change to the Special font; characters on that font are automatically handled as
if they were physically part of the current font. The Special font may actually be several fonts; the name S
is reserved and is generally used for one of these. All special fonts must be mounted after regular fonts.

Troff can be informed that any particular font is mounted by use of the fp request. The list of known
fonts is installation dependent. In the subsequent discussion of font-related requests, F represents either a
one/two-character font name or the numerical font position. The current font is available (as a numerical
position) in the read-only number register .f.

- 11 -

A request for a named but not-mounted font is honored if the font description information exists. In
this way, there is no limit on the number of fonts that may be printed in any part of a document. Mounted
fonts may be handled more efficiently, and they may be referred to by their mount positions, but there is no
other difference.

The function \S’±N’ causes the current font to be slanted by ±N degrees. Not all devices support
slanting.

Nroff understands font control and normally underlines italic characters (see §10.5).

2.3. Character size. Character point sizes available depend on the specific output device; a typical (histor-
ical) set of values is 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range of 1/12 inch to
1/2 inch. The ps request is used to change or restore the point size. Alternatively the point size may be
changed between any two characters by embedding a \sN at the desired point to set the size to N, or a
\s±N (1 ≤ N ≤ 9) to increment/decrement the size by N; \s0 restores the previous size. Requested point
size values that are between two valid sizes yield the larger of the two.

Note that through an accident of history, a construction like \s39 is parsed as size 39, and thus con-
verted to size 36 (given the sizes above), while \s40 is parsed as size 4 followed by 0. The syntax \s(nn
and \s±(nn permits specification of sizes that would otherwise be ambiguous.

The current size is available in the .s register. Nroff ignores type size requests.

The function \H’±N’ sets the height of the current font to N, or increments it by + N, or decrements
it by − N; if N = 0, the height is restored to the current point size. In each case, the width is unchanged. Not
all devices support independent height and width for characters.

Request Initial If No
Form Value Argument Notes

.ps ±N* 10 point previous E

Point size set to ±N. Alternatively embed \sN or \s±N. Any positive size value may be
requested; if invalid, the next larger valid size will result, with a maximum of 36. A paired
sequence + N, − N will work because the previous requested value is also remembered.
Ignored in nroff.

.ss N 12/36 em ignored E

Space-character size (i.e., inter-word gap) is set to N/36 ems. This size is the minimum word
spacing in adjusted text. Ignored in nroff.

.csF N M off - P

Constant character space (width) mode is set on for font F (if mounted); the width of every
character will be taken to be N/36 ems. If M is absent, the em is that of the character’s point
size; if M is given, the em is M points. All affected characters are centered in this space,
including those with an actual width larger than this space. Special Font characters occurring
while the current font is F are also so treated. If N is absent, the mode is turned off. The
mode must be in effect when the characters are physically printed. Ignored in nroff.

.bd F N off - P

The characters in font F will be artificially emboldened by printing each one twice, separated
by N − 1 basic units. A reasonable value for N is 3 when the character size is near 10 points.
If N is missing the embolden mode is turned off. The emboldening value N is in the .b reg-
ister.

T Th hi is s p pa ar ra ag gr ra ap ph h i is s p pr ri in nt te ed d w wi it th h .bd R 3. . T Th he e m mo od de e m mu us st t b be e i in n e ef ff fe ec ct t w wh he en n t th he e c ch ha ar ra ac c- -
t te er rs s a ar re e p ph hy ys si ic ca al ll ly y p pr ri in nt te ed d. . I Ig gn no or re ed d i in n nroff. .

.bd S F N off - P

The characters in the Special font will be emboldened whenever the current font is F. The

*The fields have the same meaning as described earlier in the Request Summary.

- 12 -

mode must be in effect when the characters are physically printed. Ignored in nroff.

.ft F Roman previous E

Font changed to F. Alternatively, embed \fF. The font name P is reserved to mean the pre-
vious font, and the name S for the special font.

.fp N F L R,I,B,...,S ignored -

Font position. This is a statement that a font named F is associated with position N. It is a
fatal error if F is not known. For fonts with names longer than two characters, L refers to the
long name, and F becomes a synonym. There is generally a limit of about 10 mounted fonts.

3. Page control

Top and bottom margins are not automatically provided; it is conventional to define two macros and
to set traps for them at vertical positions 0 (top) and − N (distance N up from the bottom). See §7 and Tuto-
rial Examples §T2. A pseudo-page transition onto the first page occurs either when the first break occurs
or when the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the
first page must be completed before this transition. In the following, references to the current diversion
(§7.4) mean that the mechanism being described works during both ordinary and diverted output (the for-
mer considered as the top diversion level).

The limitations on troff and nroff output dimensions are device dependent.

.pl ±N 11 in 11 in v

Page length set to ±N. The current page length is available in the .p register.

.bp ±N N=1 - B,v

Begin page. The current page is ejected and a new page is begun. If ±N is given, the new
page number will be ±N. Also see request ns.

.pn ±N N=1 ignored -

Page number. The next page (when it occurs) will have the page number ±N. A pn must
occur before the initial pseudo-page transition to affect the page number of the first page.
The current page number is in the % register.

.po ±N 1 in; 0 previous v

Page offset. The current left margin is set to ±N. The troff initial value provides 1 inch of
paper margin on a typical device. The current page offset is available in the .o register.

.ne N - N=1 V D,v

Need N vertical space. If the distance D to the next trap position (see §7.5) is less than N, a
forward vertical space of size D occurs, which will spring the trap. If there are no remaining
traps on the page, D is the distance to the bottom of the page. If D < V, another line could
still be output and spring the trap. In a diversion, D is the distance to the diversion trap, if
any, or is very large.

.mk R none internal D

Mark the current vertical place in an internal register (both associated with the current diver-
sion level), or in register R, if given. See rt request.

.rt ±N none internal D,v

Return upward only to a marked vertical place in the current diversion. If ±N (with respect
to current place) is given, the place is ±N from the top of the page or diversion or, if N is
absent, to a place marked by a previous mk. The sp request (§5.3) may be used in all cases
instead of rt by spacing to the absolute place stored in a explicit register, e.g., using the
sequence .mk Rsp |\nRu; this also works when the motion is downwards.

- 13 -

4. Text Filling, Adjusting, and Centering

4.1. Filling and adjusting. Normally, words are collected from input text lines and assembled into a out-
put text line until some word does not fit. An attempt is then made to hyphenate the word to put part of it
into the output line. The spaces between the words on the output line are then increased to spread out the
line to the current line length minus any current indent. A word is any string of characters delimited by the
space character or the beginning/end of the input line. Any adjacent pair of words that must be kept
together (neither split across output lines nor spread apart in the adjustment process) can be tied together by
separating them with the unpaddable space character ‘‘\ ’’ (backslash-space). The adjusted word spacings
are uniform in troff and the minimum interword spacing can be controlled with the ss request (§2). In
nroff, they are normally nonuniform because of quantization to character-size spaces; however, the com-
mand line option -e causes uniform spacing with full output device resolution. Filling, adjustment, and
hyphenation (§13) can all be prevented or controlled. The text length on the last line output is available in
the .n register, and text baseline position on the page for this line is in the nl register. The text baseline
high-water mark (lowest place) on the current page is in the .h register. The current horizontal output
position is in the .k register.

An input text line ending with . , ?, or !, optionally followed by any number of ", ’,),], *, or †, is
taken to be the end of a sentence, and an additional space character is automatically provided during filling.
To prevent this, add \& to the end of the input line. Multiple inter-word space characters found in the input
are retained, except for trailing spaces; initial spaces also cause a break.

When filling is in effect, a \p may be embedded or attached to a word to cause a break at the end of
the word and have the resulting output line spread out to fill the current line length.

A text input line that happens to begin with a control character can be made not to look like a control
line by prefixing it with the non-printing, zero-width filler character \&. Still another way is to specify out-
put translation of some convenient character into the control character using tr (§10.5).

4.2. Interrupted text. The copying of a input line in nofill (non-fill) mode can be interrupted by terminat-
ing the partial line with a \c. The next encountered input text line will be considered to be a continuation
of the same line of input text. Similarly, a word within filled text may be interrupted by terminating the
word (and line) with \c; the next encountered text will be taken as a continuation of the interrupted word.
If the intervening control lines cause a break, any partial line will be forced out along with any partial word.

.br - - B

Break. The filling of the line currently being collected is stopped and the line is output with-
out adjustment. Text lines beginning with space characters (but not tabs) and empty text
lines (blank lines) also cause a break.

.fi fill on - B,E

Fill subsequent output lines. The register .u is 1 in fill mode and 0 in nofill mode.

.nf fill on - B,E

Nofill. Subsequent output lines are neither filled nor adjusted. Input text lines are copied
directly to output lines without regard for the current line length.

.ad c adj, both adjust E

Line adjustment is begun. If fill mode is not on, adjustment will be deferred until fill mode is
back on. If the type indicator c is present, the adjustment type is changed as shown in the
following table.

_ _______________________________
Indicator Adjust Type_ _______________________________

l adjust left margin only
r adjust right margin only
c center

b or n adjust both margins
absent unchanged_ _______________________________ 
























The number register .j contains the current value of the ad setting; its value can be recorded

- 14 -

and used subsequently to set adjustment.

.na adjust - E

Noadjust. Adjustment is turned off; the right margin will be ragged. The adjustment type for
ad is not changed. Output line filling still occurs if fill mode is on.

.ce N off N = 1 B,E

Center the next N input text lines within the current available horizontal space (line-length
minus indent). If N = 0, any residual count is cleared. A break occurs after each of the N
input lines. If the input line is too long, it will be left adjusted.

5. Vertical Spacing

5.1. Baseline spacing. The vertical spacing (V) between the baselines of successive output lines can be
set using the vs request. V should be large enough to accommodate the character sizes on the affected out-
put lines. For the common type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater
than the point size; troff default is 10-point type on a 12-point spacing (as in this document). The current V
is available in the .v register. Multiple-V line separation (e.g., double spacing) may be requested with ls,
but it is better to use a large vs instead; certain preprocessors assume single spacing. The current line spac-
ing is available in the .L register.

5.2. Extra line-space. If a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the extra-line-space function \x’N’ can be embedded in
or attached to that word. If N is negative, the output line containing the word will be preceded by N extra
vertical space; if N is positive, the output line containing the word will be followed by N extra vertical
space. If successive requests for extra space apply to the same line, the maximum values are used. The
most recently utilized post-line extra line-space is available in the .a register.

In \x’...’ and other functions having a pair of delimiters around their parameter, the delimiter
choice (here ’) is arbitrary, except that it can not look like the continuation of a number expression for N.

5.3. Blocks of vertical space. A block of vertical space is ordinarily requested using sp, which honors the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be reserved
using sv.

.vs N 12pts; 1/6in previous E,p

Set vertical baseline spacing size V. Transient extra vertical space is available with \x’N ’
(see above).

.ls N N = 1 previous E

Line spacing set to ±N. N − 1 Vs (blank lines) are appended to each output text line.
Appended blank lines are omitted, if the text or previous appended blank line reached a trap
position.

.sp N - N = 1 V B,v

Space vertically in either direction. If N is negative, the motion is backward (upward) and is
limited to the distance to the top of the page. Forward (downward) motion is truncated to the
distance to the nearest trap. If the no-space mode is on, no spacing occurs (see ns, and rs
below).

.sv N - N = 1 V v

Save a contiguous vertical block of size N. If the distance to the next trap is greater than N, N
vertical space is output. No-space mode has no effect. If this distance is less than N, no ver-
tical space is immediately output, but N is remembered for later output (see os). Subsequent
sv requests will overwrite any still remembered N.

.os - - -

Output saved vertical space. No-space mode has no effect. Used to finally output a block of
vertical space requested by an earlier sv request.

.ns space - D

- 15 -

No-space mode turned on. When on, no-space mode inhibits sp requests and bp requests
without a next page number. No-space mode is turned off when a line of output occurs, or
with rs.

.rs space - D

Restore spacing. The no-space mode is turned off.

Blank text line. - B

Causes a break and output of a blank line exactly like sp 1.

6. Line Length and Indenting

The maximum line length for fill mode may be set with ll. The indent may be set with in; an
indent applicable to only the next output line may be set with ti. The line length includes indent space but
not page offset space. The line length minus the indent is the basis for centering with ce. The effect of ll,
in, or ti is delayed, if a partially collected line exists, until after that line is output. In fill mode the length
of text on an output line is less than or equal to the line length minus the indent. The current line length and
indent are available in registers .l and .i respectively. The length of three-part titles produced by tl
(see §14) is independently set by lt.

.ll ±N 6.5 in previous E,m

Line length is set to ±N.

.in ±N N=0 previous B,E,m

Indent is set to ±N. The indent is prepended to each output line.

.ti ±N - ignored B,E,m

Temporary indent. The next output text line will be indented a distance ±N with respect to
the current indent. The resulting total indent may not be negative. The current indent is not
changed.

7. Macros, Strings, Diversion, and Position Traps

7.1. Macros and strings. A macro is a named set of arbitrary lines that may be invoked by name or with a
trap. A string is a named string of characters, not including a newline character, that may be interpolated
by name at any point. Request, macro, and string names share the same name list. Macro and string names
may be one or two characters long and may usurp previously defined request, macro, or string names; this
implies that built-in operations may be (irrevocably) redefined. Any of these entities may be renamed with
rn or removed with rm.

Macros are created by de and di, and appended to by am and da; di and da cause normal output to
be stored in a macro. A macro is invoked in the same way as a request; a control line beginning .xx will
interpolate the contents of macro xx. The remainder of the line may contain up to nine arguments.

Strings are created by ds and appended to by as. The strings x and xx are interpolated at any desired
point with \∗x and \∗(xx respectively. String references and macro invocations may be nested.

7.2. Copy mode input interpretation. During the definition and extension of strings and macros (not by
diversion) the input is read in copy mode. In copy mode, input is copied without interpretation except that:

• The contents of number registers indicated by \n are interpolated.
• Strings indicated by \∗ are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed newlines indicated by \newline are eliminated.
• Comments indicated by \" are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOH respectively (§9).
• \\ is interpreted as \.
• \. is interpreted as ‘‘.’’.

These interpretations can be suppressed by prepending a \. For example, since \\ maps into a \, \\n will
copy as \n, which will be interpreted as a number register indicator when the macro or string is reread.

- 16 -

7.3. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to
nine arguments. The argument separator is the space character (not tab), and arguments may be surrounded
by double quotes to permit embedded space characters. Pairs of double quotes may be embedded in
double-quoted arguments to represent a single double-quote character. The argument "" is explicitly null.
If the desired arguments won’t fit on a line, a concealed newline may be used to continue on the next line.
A trailing double quote may be omitted.

When a macro is invoked the input level is pushed down and any arguments available at the previous
level become unavailable until the macro is completely read and the previous level is restored. A macro’s
own arguments can be interpolated at any point within the macro with \$N, which interpolates the Nth
argument (1≤N≤9). If an invoked argument does not exist, a null string results. For example, the macro xx
may be defined by

.de xx \" begin definition
Today is \\$1 the \\$2.
.. \" end definition

and called by

.xx Monday 14th

to produce the text

Today is Monday the 14th.

Note that each \$ was concealed in the definition with a prepended \. The number of arguments is in the
.$ register.

No arguments are available at the top (non-macro) level, within a string, or within a trap-invoked
macro.

Arguments are copied in copy mode onto a stack where they are available for reference. It is advis-
able to conceal string references (with an extra \) to delay interpolation until argument reference time.

7.4. Diversions. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §T5) or determining the horizontal and vertical size of some text for conditional changing of
pages or columns. A single diversion trap may be set at a specified vertical position. The number registers
dn and dl respectively contain the vertical and horizontal size of the most recently ended diversion. Pro-
cessed text that is diverted into a macro retains the vertical size of each of its lines when reread in nofill
mode regardless of the current V. Constant-spaced (cs) or emboldened (bd) text that is diverted can be
reread correctly only if these modes are again or still in effect at reread time. One way to do this is to
embed in the diversion the appropriate cs or bd requests with the transparent mechanism described in
§10.6.

Diversions may be nested and certain parameters and registers are associated with the current diver-
sion level (the top non-diversion level may be thought of as the 0th diversion level). These are the diver-
sion trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the cur-
rent vertical place (.d register), the current high-water text baseline (.h register), and the current diversion
name (.z register).

7.5. Traps. Three types of trap mechanisms are available—page traps, a diversion trap, and an input-line-
count trap. Macro-invocation traps may be planted using wh at any page position including the top. This
trap position may be changed using ch. Trap positions at or below the bottom of the page have no effect
unless or until moved to within the page or rendered effective by an increase in page length. Two traps
may be planted at the same position only by first planting them at different positions and then moving one
of the traps; the first planted trap will conceal the second unless and until the first one is moved (see Tuto-
rial Examples). If the first one is moved back, it again conceals the second trap. The macro associated with
a page trap is automatically invoked when a line of text is output whose vertical size reaches or sweeps past
the trap position. Reaching the bottom of a page springs the top-of-page trap, if any, provided there is a
next page. The distance to the next trap position is available in the .t register; if there are no traps
between the current position and the bottom of the page, the distance returned is the distance to the page
bottom.

- 17 -

A macro-invocation trap effective in the current diversion may be planted using dt. The .t register
works in a diversion; if there is no subsequent trap a large distance is returned. For a description of input-
line-count traps, see it below.

.de xx yy - .yy=.. -

Define or redefine the macro xx. The contents of the macro begin on the next input line.
Input lines are copied in copy mode until the definition is terminated by a line beginning with
.yy, whereupon the macro yy is called. In the absence of yy, the definition is terminated by a
line beginning with ‘‘..’’. A macro may contain de requests provided the terminating mac-
ros differ or the contained definition terminator is concealed. ‘‘..’’ can be concealed as
\\.. which will copy as \.. and be reread as ‘‘..’’.

.am xx yy - .yy=.. -

Append to macro xx (append version of de).

.ds xx string - ignored -

Define a string xx containing string. Any initial double quote in string is stripped off to per-
mit initial blanks.

.as xx string - ignored -

Append string to string xx (append version of ds).

.rm xx - ignored -

Remove request, macro, or string. The name xx is removed from the name list and any
related storage space is freed. Subsequent references will have no effect. If many macros
and strings are being created dynamically, it may become necessary to remove unused ones
to recapture internal storage space for newer registers.

.rn xx yy - ignored -

Rename request, macro, or string xx to yy. If yy exists, it is first removed.

.di xx - end D

Divert output to macro xx. Normal text processing occurs during diversion except that page
offsetting is not done. The diversion ends when the request di or da is encountered without
an argument; extraneous requests of this type should not appear when nested diversions are
being used.

.da xx - end D

Divert, appending to macro xx (append version of di).

.wh N xx - - v

Install a trap to invoke xx at page position N; a negative N will be interpreted as a distance
from the page bottom. Any macro previously planted at N is replaced by xx. A zero N refers
to the top of a page. In the absence of xx, the first trap found at N, if any, is removed.

.ch xx N - - v

Change the trap position for macro xx to be N. In the absence of N, the trap, if any, is
removed.

.dt N xx - off D,v

Install a diversion trap at position N in the current diversion to invoke macro xx. Another dt
will redefine the diversion trap. If no arguments are given, the diversion trap is removed.

.it N xx - off E

Set an input-line-count trap to invoke the macro xx after N lines of text input have been read
(control or request lines do not count). The text may be inline text or text interpolated by
inline or trap-invoked macros.

.em xx none none -

The macro xx will be invoked when all input has ended. The effect is almost as if the

- 18 -

contents of xx had been at the end of the last file processed, but all processing ceases at the
next page eject.

8. Number Registers

A variety of parameters are available to the user as predefined number registers (see Summary, page
0). In addition, users may define their own registers. Register names are one or two characters long and do
not conflict with request, macro, or string names. Except for certain predefined read-only registers, a num-
ber register can be read, written, automatically incremented or decremented, and interpolated into the input
in a variety of formats. One common use of user-defined registers is to automatically number sections,
paragraphs, lines, etc. A number register may be used any time numerical input is expected or desired and
may be used in numerical expressions (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and
the auto-increment size. Registers are also modified, if accessed with an auto-incrementing sequence. If
the registers x and xx both contain N and have the auto-increment size M, the following access sequences
have the effect shown:

_ __
Effect on Value

Sequence Register Interpolated_ __
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n–x x decremented by M N–M
\n+(xx xx incremented by M N+M
\n–(xx xx decremented by M N–M_ __ 












































When interpolated, a number register is converted to decimal (default), decimal with leading zeros, lower-
case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic
according to the format specified by af.

.nr R ±N M - u

The number register R is assigned the value ±N with respect to the previous value, if any.
The increment for auto-incrementing is set to M.

.af R c arabic - -

Assign format c to register R. The available formats are:
_ __

Numbering
Format Sequence_ __
1 0, 1, 2, 3, 4, 5, ...
001 000, 001, 002, 003, 004, 005, ...
i 0, i, ii, iii, iv, v, ...
I 0, I, II, III, IV, V, ...
a 0, a, b, c, ..., z, aa, ab, ..., zz, aaa, ...
A 0, A, B, C, ..., Z, AA, AB, ..., ZZ, AAA, ..._ __ 

































An arabic format having N digits specifies a field width of N digits (example 2 above). The
read-only registers and the width function \w (§11.2) are always arabic. Warning: the value
of a number register in a non-arabic format is not numeric, and will not produce the expected
results in expressions.

The function \gx or \g(xx returns the format of a number register in a form suitable for af;
it returns nothing if the register has not been used.

.rr R - ignored -

Remove number register R. If many registers are being created dynamically, it may become
necessary to remove unused registers to recapture internal storage space for newer registers.
The register .R contains the number of number registers still available.

- 19 -

9. Tabs, Leaders, and Fields

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (control-A, hereafter called
the leader character) can both be used to generate either horizontal motion or a string of repeated charac-
ters. The length of the generated entity is governed by internal tab stops specifiable with ta. The default
difference is that tabs generate motion and leaders generate a string of periods; tc and lc offer the choice
of repeated character or motion. There are three types of internal tab stops—left adjusting, right adjusting,
and centering. In the following table, D is the distance from the current position on the input line (where a
tab or leader was found) to the next tab stop, next-string consists of the input characters following the tab
(or leader) up to the next tab (or leader) or end of line, and W is the width of next-string.

_ __
Tab Length of motion or Location of
type repeated characters next-string_ __
Left D Following D

Right D–W Right adjusted within D
Centered D–W/2 Centered on right end of D_ __ 




























The length of generated motion is allowed to be negative, but that of a repeated character string cannot be.
Repeated character strings contain an integer number of characters, and any residual distance is prepended
as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as next-string termina-
tors.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab
and leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.2. Fields. A field is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the posi-
tion where the field begins to the next tab stop. The difference between the total length of all the sub-
strings and the field length is incorporated as horizontal padding space that is divided among the indicated
padding places. The incorporated padding is allowed to be negative. For example, if the field delimiter is
and the padding indicator is ˆ, #ˆxxxˆright# specifies a right-adjusted string with the string xxx centered
in the remaining space.

.ta Nt ... 0.8; 0.5in none E,m

Set tab stops and types. t=R, right adjusting; t=C, centering; t absent, left adjusting. Troff
tab stops are preset every 0.5in., nroff every 0.8in. The stop values are separated by spaces,
and a value preceded by + is treated as an increment to the previous stop value.

.tc c none none E

The tab repetition character becomes c, or is removed, thus specifying motion.

.lc c . none E

The leader repetition character becomes c, or is removed, thus specifying motion.

.fc a b off off -

The field delimiter is set to a; the padding indicator is set to the space character or to b, if
given. In the absence of arguments the field mechanism is turned off.

10. Input and Output Conventions and Character Translations

10.1. Input character translations. Ways of inputting the valid character set were discussed in §2.1. The
ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed elsewhere.
The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, and may be
used as delimiters or translated into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequences, which cause the following character to mean
another character, or to indicate some function. A complete list of such sequences is given in the Summary
on page -1. The escape character \ should not be confused with the ASCII control character ESC. The
escape character \ can be input with the sequence \\. The escape character can be changed with ec, and
all that has been said about the default \ becomes true for the new escape character. \e can be used to

- 20 -

print whatever the current escape character is. The escape mechanism may be turned off with eo, and
restored with ec.

.ec c \ \ -

Set escape character to \, or to c, if given.

.eo on - -

Turn escape mechanism off.

10.2. Ligatures. The set of available ligatures is device and font dependent, but is often a subset of fi, fl,
ff, ffi, and ffl. They may be input by \(fi, \(fl, \(ff, \(Fi, and \(Fl respectively. The ligature
mode is normally on in troff, and automatically invokes ligatures during input.

.lg N on; off on -

Ligature mode is turned on if N is absent or non-zero, and turned off if N = 0. If N = 2, only
the two-character ligatures are automatically invoked. Ligature mode is inhibited for request,
macro, string, register, or file names, and in copy mode. No effect in nroff.

10.3. Backspacing, underlining, overstriking, etc. Unless in copy mode, the ASCII backspace character is
replaced by a backward horizontal motion having the width of the space character. Underlining as a form
of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

Nroff automatically underlines characters in the underline font, specifiable with uf, normally that on
font position 2. In addition to ft and \fF, the underline font may be selected by ul and cu. Underlining
is restricted to an output-device-dependent subset of reasonable characters.

.ul N off N = 1 E

Italicize in troff (underline in nroff) the next N input text lines. Actually, switch to underline
font, saving the current font for later restoration; other font changes within the span of a ul
will take effect, but the restoration will undo the last change. Output generated by tl (§14)
is affected by the font change, but does not decrement N. If N > 1, there is the risk that a trap
interpolated macro may provide text lines within the span; environment switching can pre-
vent this.

.cu N off N = 1 E

Continuous underline. A variant of ul that causes every character to be underlined in nroff.
Identical to ul in troff.

.uf F Italic Italic -

Underline font set to F. In nroff, F may not be on position 1.

10.4. Control characters. Both the control character . and the no-break control character ’ may be
changed. Such a change must be compatible with the design of any macros used in the span of the change,
and particularly of any trap-invoked macros.

.cc c . . E

The basic control character is set to c, or reset to ‘‘.’’.

.c2 c ’ ’ E

The no-break control character is set to c, or reset to ‘‘’’’.

10.5. Output translation. One character can be made a stand-in for another character using tr. All text
processing (e.g., character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (including
diversion).

.tr abcd.... none - O

Translate a into b, c into d, etc. If an odd number of characters is given, the last one will be
mapped into the space character. To be consistent, a particular translation must stay in effect
from input to output time.

10.6. Transparent throughput. An input line beginning with a \! is read in copy mode and transparently

- 21 -

output (without the initial \!); the text processor is otherwise unaware of the line’s presence. This mecha-
nism may be used to pass control information to a post-processor or to embed control lines in a macro cre-
ated by a diversion.

10.7. Transparent output The sequence \X’anything’ copies anything to the output, as a device control
function of the form x X anything (§22). Escape sequences in anything are processed.

10.8. Comments and concealed newlines. An uncomfortably long input line that must stay one line (e.g.,
a string definition, or nofilled text) can be split into several physical lines by ending all but the last one with
the escape \. The sequence \newline is always ignored, except in a comment. Comments may be embed-
ded at the end of any line by prefacing them with \". The newline at the end of a comment cannot be con-
cealed. A line beginning with \" will appear as a blank line and behave like .sp 1; a comment can be on
a line by itself by beginning the line with .\".

11. Local Horizontal and Vertical Motions, and the Width Function

11.1. Local Motions. The functions \v’N’ and \h’N’ can be used for local vertical and horizontal
motion respectively. The distance N may be negative; the positive directions are rightward and downward.
A local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary
that the net vertical local motion within a word in filled text and otherwise within a line balance to zero.
The above and certain other escape sequences providing local motion are summarized in the following
table.

_ __
Vertical Effect in Horizontal Effect in

Local Motion troff nroff Local Motion troff nroff_ __

\v’N’ Move distance N \h’N’ Move distance N
_ ____________________________________ \space Unpaddable space-size space

\u 1⁄2 em up 1⁄2 line up \0 Digit-size space
\d 1⁄2 em down 1⁄2 line down ______________________________________

\r 1 em up 1 line up \| 1/6 em space ignored
\ˆ 1/12 em space ignored

_ __ 


















































































As an example, E2 could be generated by the sequence E\s–2\v’–0.4m’2\v’0.4m’\s+2; note that
the 0.4 em vertical motions are at the smaller size.

11.2. Width Function. The width function \w’string’ generates the numerical width of string (in basic
units). Size and font changes may be embedded in string, and will not affect the current environment. For
example, .ti –\w’\fB1. ’u could be used to temporarily indent leftward a distance equal to the size
of the string ‘‘1. ’’ in font B.

The width function also sets three number registers. The registers st and sb are set respectively to
the highest and lowest extent of string relative to the baseline; then, for example, the total height of the
string is \n(stu–\n(sbu. In troff the number register ct is set to a value between 0 and 3. The value 0
means that all of the characters in string were short lower case characters without descenders (like e); 1
means that at least one character has a descender (like y); 2 means that at least one character is tall (like H);
and 3 means that both tall characters and characters with descenders are present.

11.3. Mark horizontal place. The function \kx causes the current horizontal position in the input line to
be stored in register x. For example, the construction \kxword\h’|\nxu+3u’word will embolden word
by backing up to almost its beginning and overprinting it, resulting in word word.

12. Overstrike, Bracket, Line-drawing, Graphics, and Zero-width Functions

12.1. Overstriking. Automatically centered overstriking of up to nine characters is provided by the over-
strike function \o’string’. The characters in string are overprinted with centers aligned; the total width is
that of the widest character. string may not contain local vertical motion. As examples, \o’e\’’ pro-
duces e ´ , and \o’\(mo\(sl’ produces ∈ / .

12.2. Zero-width characters. The function \zc will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \z\(ci\(pl will produce +, and

- 22 -

\(br\z\(rn\(ul\(br will produce a small constructed box  _.
12.3. Large Brackets. The Special Font usually contains a number of bracket construction pieces
           that can be combined into various bracket styles. The function \b’string’ may be

used to pile up vertically the characters in string (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current baseline
(1⁄2 line in nroff). For example,

\b’\(lc\(lf’E\b’\(rc\(rf’\x’–0.5m’\x’0.5m’

produces 
E


 .

12.4. Line drawing. The function \l’Nc’ (backslash-ell) draws a string of repeated c’s towards the right
for a distance N. If c looks like a continuation of an expression for N, it may be insulated from N with a
\&. If c is not specified, the _ (baseline rule) is used (underline character in nroff). If N is negative, a back-
ward horizontal motion of size N is made before drawing the string. Any space resulting from N/(size of c)
having a remainder is put at the beginning (left end) of the string. If N is less than the width of c, a single c
is centered on a distance N. In the case of characters that are designed to be connected, such as baseline-
rule _ , under-rule _ , and root-en , the remainder space is covered by overlapping. As an example, a
macro to underscore a string can be written

.de us
\\$1\ l ’|0\(ul’
..

or one to draw a box around a string

.de bx
\(br\|\\$1\|\(br\ l ’|0\(rn’\ l ’|0\(ul’
..

such that

.ul "underlined words"

and

.bx "words in a box"

yield underlined words_ _____________ and words in a box   _ ____________.

The function \L’Nc’ draws a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in nroff), with the first two characters overlapped, if necessary, to form a continuous line.
The default character is the box rule  (\(br); the other suitable character is the bold vertical  (\(bv).
The line is begun without any initial motion relative to the current baseline. A positive N specifies a line
drawn downward and a negative N specifies a line drawn upward. After the line is drawn no compensating
motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large
boxes. The zero-width box-rule and the 1⁄2-em wide under-rule were designed to form corners when using
1-em vertical spacings. For example the macro

.de eb

.sp –1 \"compensate for next automatic baseline spacing

.nf \"avoid possibly overflowing word buffer
\h’-.5n’\L’|\\nau–1’\l’\\n(.lu+1n\(ul’\L’-|\\nau+1’\l’|0u-.5n\(ul’ \"draw box
.fi
..

will draw a box around some text whose beginning vertical place was saved in number register a (e.g.,
using .mk a) as was done for this paragraph.












_ ___












 _ ___

12.5. Graphics. The function \D’c...’ draws a graphic object of type c according to a sequence of param-
eters, which are generally pairs of numbers.

\D’l dh dv’ draw line from current position by dh , dv

- 23 -

\D’c d’ draw circle of diameter d with left side at current position
\D’e d 1 d 2’ draw ellipse of diameters d 1 and d 2

\D’a dh 1 dv 1 dh 2 dv 2’ draw arc from current position to dh 1 + dh 2, dv 1 + dv 2,
with center at dh 1 , dv 1 from current position

\D’˜ dh 1 dv 1 dh 2 dv 2 ...’ draw B-spline from current position by dh 1 , dv 1,
then by dh 2 ,dv 2, then by dh 2 ,dv 2, then ...

For example, \D’e0.2i 0.1i’ draws the ellipse , and \D’l.2i -.1i’\D’l.1i .1i’ the line
. A \D with an unknown c is processed and copied through to the output for unspecified interpreta-

tion.

Numbers taken as horizontal (first, third, etc.) have default scaling of ems; vertical numbers (second,
fourth, etc.) have default scaling of V s (§1.3). The position after a graphical object has been drawn is at its
end; for circles and ellipses, the ‘‘end’’ is at the right side.

13. Hyphenation.

Automatic hyphenation may be switched off and on. When switched on with hy, several variants
may be set. A hyphenation indicator character may be embedded in a word to specify desired hyphenation
points, or may be prepended to suppress hyphenation. In addition, the user may specify a small list of
exception words.

Only words that consist of a central alphabetic string surrounded by (usually null) non-alphabetic
strings are candidates for automatic hyphenation. Words that contain hyphens (minus), em-dashes (\(em),
or hyphenation indicator characters are always subject to splitting after those characters, whether automatic
hyphenation is on or off.

.nh hyphenate - E

Automatic hyphenation is turned off.

.hy N on, N = 1 on, N = 1 E

Automatic hyphenation is turned on for N ≥ 1, or off for N = 0. If N = 2, last lines (ones that
will cause a trap) are not hyphenated. For N = 4 and 8, the last and first two characters
respectively of a word are not split off. These values are additive; i.e., N = 14 will invoke all
three restrictions.

.hc c \% \% E

Hyphenation indicator character is set to c or to the default \%. The indicator does not
appear in the output.

.hw word ... ignored -

Specify hyphenation points in words with embedded minus signs. Versions of a word with
terminal s are implied; i.e., dig-it implies dig-its. This list is examined initially and
after each suffix stripping. The space available is small—about 128 characters.

14. Three-Part Titles.

The titling function tl provides for automatic placement of three fields at the left, center, and right
of a line with a title length specifiable with lt. tl may be used anywhere, and is independent of the nor-
mal text collecting process. A common use is in header and footer macros.

.tl ’left’center’right’ - -

The strings left, center, and right are respectively left-adjusted, centered, and right-adjusted
in the current title length. Any of the strings may be empty, and overlapping is permitted. If
the page-number character (initially %) is found within any of the fields it is replaced by the
current page number in the format assigned to register %. Any character may be used in
place of ’ as the string delimiter.

.pc c % off -

The page number character is set to c, or removed. The page number register remains %.

- 24 -

.lt ±N 6.5 in previous E,m

Length of title is set to ±N. The line length and the title length are independent. Indents do
not apply to titles; page offsets do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a
three-digit, arabic number plus a digit-space is prepended to output text lines. The text lines are thus

3 offset by four digit-spaces, and otherwise retain their line length; a reduction in line length may be
desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical spaces, and
lines generated by tl are not numbered. Numbering can be temporarily suspended with nn, or with

6 an .nm followed by a later .nm +0. In addition, a line number indent I, and the number-text separa-
tion S may be specified in digit-spaces. Further, it can be specified that only those line numbers that
are multiples of some number M are to be printed (the others will appear as blank number fields).

.nm ±N M S I off E

Line number mode. If ±N is given, line numbering is turned on, and the next output line
numbered is numbered ±N. Default values are M = 1, S = 1, and I = 0. Parameters corre-
sponding to missing arguments are unaffected; a non-numeric argument is considered miss-
ing. In the absence of all arguments, numbering is turned off; the next line number is pre-
served for possible further use in number register ln.

.nn N - N = 1 E

The next N text output lines are not numbered.

9 As an example, the paragraph portions of this section are numbered with M= 3: .nm 1 3 was
placed at the beginning; .nm was placed at the end of the first paragraph; and .nm +0 was placed in
front of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by

12 \w’0000’u) to keep the right side aligned. Another example is .nm +5 5 x 3, which turns on num-
bering with the line number of the next line to be 5 greater than the last numbered line, with M = 5,
with spacing S untouched, and with the indent I set to 3.

16. Conditional Acceptance of Input

In the following, c is a one-character built-in condition name, ! signifies not, N is a numerical
expression, string1 and string2 are strings delimited by any non-blank, non-numeric character not in the
strings, and anything represents what is conditionally accepted.

.if c anything - -

If condition c true, accept anything as input; in multi-line case use \{anything \}.

.if !c anything- -

If condition c false, accept anything.

.if N anything - u

If expression N > 0, accept anything.

.if !N anything - u

If expression N ≤ 0, accept anything.

.if ’string1’string2’ anything -

If string1 identical to string2, accept anything.

.if !’string1’string2’ anything -

If string1 not identical to string2, accept anything.

.ie c anything - u

If portion of if-else; all of the forms for if above are valid.

.el anything - -

- 25 -

Else portion of if-else.

The built-in condition names are:
_ ___________________________________
Condition

Name True If_ ___________________________________
o Current page number is odd
e Current page number is even
t Formatter is troff
n Formatter is nroff_ ___________________________________ 
























If the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), anything is accepted as input. If a ! precedes the condi-
tion, number, or string comparison, the sense of the acceptance is reversed.

Any spaces between the condition and the beginning of anything are skipped over. The anything can
be either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the
first line must begin with a left delimiter \{ and the last line must end with a right delimiter \}.

The request ie (if-else) is identical to if except that the acceptance state is remembered. A subse-
quent and matching el (else) request then uses the reverse sense of that state. ie-el pairs may be nested.

Some examples are:

.if e .tl ’ Even Page %’’’

which outputs a title if the page number is even; and

.ie \n%>1 \{\
’ sp 0.5i
. tl ’Page %’’’
’ sp |1.2i \}
.el .sp |2.5i

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text processing are gathered together into an environ-
ment, which can be switched by the user. The environment parameters are those associated with requests
noting E in their Notes column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are page-oriented parameters, diversion-oriented parameters, number
registers, and macro and string definitions. All environments are initialized with default parameter values.

.ev N N = 0 previous -

Environment switched to environment 0 ≤ N ≤ 2. Switching is done in push-down fashion so
that restoring a previous environment must be done with .ev rather than specific reference.
Note that what is pushed down and restored is the environment number, not its contents.

18. Insertions from the Standard Input

The input can be temporarily switched to the system standard input with rd, which will switch back
when two consecutive newlines are found (the extra blank line is not used). This mechanism is intended for
insertions in form-letter-like documentation. On UNIX, the standard input can be the user’s keyboard, a
pipe, or a file.

.rd prompt - prompt=BEL -

Read insertion from the standard input until two newlines in a row are found. If the standard
input is the user’s keyboard, prompt (or a BEL) is written onto the standard output. rd
behaves like a macro, and arguments may be placed after prompt.

.ex - - -

Exit from nroff/troff. Text processing is terminated exactly as if all input had ended.

- 26 -

If insertions are to be taken from the terminal keyboard while output is being printed on the terminal,
the command line option –q will turn off the echoing of keyboard input and prompt only with BEL. The
regular input and insertion input cannot simultaneously come from the standard input.

As an example, multiple copies of a form letter may be prepared by entering the insertions for all the
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke itself
with nx (§19); the process would ultimately be ended by an ex in the insertion file.

19. Input/Output File Switching

.so filename - -

Switch source file. The top input (file reading) level is switched to filename. When the new
file ends, input is again taken from the original file. so’s may be nested.

.nx filename end-of-file -

Next file is filename. The current file is considered ended, and the input is immediately
switched to filename.

.sy string - -

Execute program from string, which is the rest of the input line. The output is not collected
automatically. The number register $$, which contains the process id of the troff process,
may be useful in generating unique filenames for output.

.pi string - -

Pipe output to string, which is the rest of the input line. This request must occur before any
printing occurs.

.cf filename - -

Copy contents of file filename to output, completely unprocessed. The file is assumed to con-
tain something meaningful to subsequent processes.

20. Miscellaneous

.mc c N - off E,m 
Specifies that a margin character c appear a distance N to the right of the right margin after 
each non-empty text line (except those produced by tl). If the output line is too long (as can 
happen in nofill mode) the character will be appended to the line. If N is not given, the previ- 
ous N is used; the initial N is 0.2 inches in nroff and 1 em in troff. The margin character used 
with this paragraph was a 12-point box-rule. 

.tm string - newline -

After skipping initial blanks, string (rest of the line) is read in copy mode and written on the
standard error.

.ab string - newline -

After skipping initial blanks, string (rest of the line) is read in copy mode and written on the
standard error. Troff or nroff then exit.

.ig yy - .yy=.. -

Ignore input lines. ig behaves exactly like de (§7) except that the input is discarded. The
input is read in copy mode, and any auto-incremented registers will be affected.

.lf N filename - -

Set line number to N and filename to f ilename for purposes of subsequent error messages,
etc. The number register [sic] .F contains the name of the current input file, as set by com-
mand line argument, so, nx, or lf. The number register .c contains the number of input
lines read from the current file, again perhaps as modified by lf.

.pm t - all -

Print macros. The names and sizes of all of the defined macros and strings are printed on the

- 27 -

standard error; if t is given, only the total of the sizes is printed. The sizes is given in blocks
of 128 characters.

.fl - - B

Flush output buffer. Force output, including any pending position information.

21. Output and Error Messages.

The output from tm, pm, and the prompt from rd, as well as various error messages are written onto
the standard error. The latter is different from the standard output, where formatted text goes. By default,
both are written onto the user’s terminal, but they can be independently redirected.

Various error conditions may occur during the operation of nroff and troff. Certain less serious errors
having only local impact do not cause processing to terminate. Two examples are word overflow, caused
by a word that is too large to fit into the word buffer (in fill mode), and line overflow, caused by an output
line that grew too large to fit in the line buffer. In both cases, a message is printed, the offending excess is
discarded, and the affected word or line is marked at the point of truncation with a ∗ in nroff and a in
troff. Processing continues if possible, on the grounds that output useful for debugging may be produced.
If a serious error occurs, processing terminates, and a message is printed, along with a list of the macro
names currently active. Examples of serious errors include the inability to create, read, or write files, and
the exceeding of certain internal limits that make future output unlikely to be useful.

22. Output Language

Troff produces its output in a language that is independent of any specific output device, except that
the numbers in it have been computed on the basis of the resolution of the device, and the sizes, fonts, and
characters that that device can print. Nevertheless it is quite possible to interpret that output on a different
device, within the latter’s capabilities.

sn set point size to n
fn set font to n
cc print ASCII character c
Cxx print character xx; terminate xx by white space
Nn print character n on current font
Hn go to absolute horizontal position n (n ≥ 0)
Vn go to absolute vertical position n (n ≥ 0, down is positive)
hn go n units horizontally; n < 0 is to the left
vn go n units vertically; n < 0 is up
nnc move right nn, then print ASCII character c; nn must be exactly 2 digits
pn new page n begins—set vertical position to 0
nb a end of line (information only—no action); b = space before line, a = after
w paddable word space (information only—no action)
Dc ...\n graphics function c; see below
x ...\n device control functions; see below
...\n comment

All position values are in units. Sequences that end in digits must be followed by a non-digit. Blanks, tabs
and newlines may occur as separators in the input, and are mandatory to separate constructions that would
otherwise be confused. Graphics functions, device control functions, and comments extend to the end of
the line they occur on.

The device control and graphics commands are intended as open-ended families, to be expanded as
needed. The graphics functions coincide directly with the \D sequences:

Dl dh dv draw line from current position by dh , dv
Dc d draw circle of diameter d with left side here
De dh 1 dv 2 draw ellipse of diameters dh 1 and dv 2

Da dh 1 dv 1 dh 2 dv 2 draw arc from current position to dh 1 + dh 2 , dv 1 + dv 2,
center at dh 1 , dv 1 from current position

D˜ dh 1 dv 1 dh 2 dv 2 ... draw B-spline from current position to dh 1 , dv 1,

- 28 -

then to dh 2 , dv 2, then to ...
Dz dh 1 dv 1 dh 2 dv 2 ... for any other z is uninterpreted

In all of these, dh , dv is an increment on the current horizontal and vertical position, with down and right
positive. All distances and dimensions are in units.

The device control functions begin with x, then a command, then other parameters.

x T s name of typesetter is s
x r n h v resolution is n units/inch; h = minimum horizontal motion, v = minimum vertical
x i initialize
x f n s mount font s on font position n
x p pause—can restart
x s stop—done forever
x t generate trailer information, if any
x H n set character height to n
x S n set slant to n
x X any generated by the \X function
x any to be ignored if not recognized

Subcommands like ‘‘i’’ may be spelled out like ‘‘init’’.

The commands x T, x r ..., and x i must occur first; fonts must be mounted before they can be
used; x s comes last. There are no other order requirements.

The following is the output from ‘‘hello, world’’ for a typical Postscript printer, as described in
§23:

x T post
x res 720 1 1
x init
V0
p1

x font 1 R
x font 2 I
x font 3 B
x font 4 BI
x font 5 CW
x font 6 H
x font 7 HB
x font 8 HX
x font 9 S1
x font 10 S

s10
f1
H0
s10
f1
V0
H720
V120
ch
50e44l28l28o50,w58w72o50r33l28dn120 0
x trailer
V7920
x stop

Troff output is normally not redundant; size and font changes and position information are not
included unless needed. Nevertheless, each page is self-contained, for the benefit of postprocessors that re-
order pages or process only a subset.

- 29 -

23. Device and Font Description Files

The parameters that describe a output device name are read from the directory
/usr/lib/font/devname, each time troff is invoked. The device name is provided by default, by the
environment variable TYPESETTER, or by a command-line argument -Tname. The default device name is
post, for Postscript. The pre-defined string .T contains the name of the device. The -F command-line
option may be used to change the default directory.

23.1. Device description file. The file DESC in /usr/lib/font/devname contains general parame-
ters of the device, one per line, as a sequence of names and values. Troff recognizes these parameters, and
ignores any others that may be present for specific drivers:

fonts n F 1 F 2 . . . F n

sizes s 1 s 2 . . .0
res n
hor n
vert n
unitwidth n
charset
list of multi-character character names (optional)

The F i are font names to be initially mounted. The list of sizes is a set of integers representing some or all
of the legal sizes the device can produce, terminated by a zero. The res parameter gives the resolution of
the machine in units per inch; hor and ver give the minimum number of units that can be moved horizon-
tally and vertically.

Character widths for each font are assumed to be given in machine units at point size unitwidth.
(In other words, a character with a width of n is n units wide at size unitwidth.)

A list of valid character names may be introduced by charset; the list of names is optional.

A line whose first non-blank character is # is a comment. Except that charset must occur last,
parameters may appear in any order.

Here is a subset of the DESC file for a typical Postscript printer:

Description file for Postscript printers.

fonts 10 R I B BI CW H HB HX S1 S
sizes 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31 32 33 34 35 36 38 40 44 48 54 60 72 0
res 720
hor 1
vert 1
unitwidth 10
charset
hy ct fi fl ff Fi Fl dg em 14 34 12 en aa
ga ru sc dd -> br Sl ps cs cy as os =. ld
rd le ge pp -+ ob vr
sq bx ci fa te ** pl mi eq ˜= *A *B *X *D
*E *F *G *Y *I *K *L *M *N *O *P *R *H *S *T *U *W
*C *Q *Z ul rn *a *b *x *d *e *f *g *y *i *k
*l *m *n *o *p *h *r *s *t *u *w *c *q *z

23.2. Font description files. Each font is described by an analogous description file, which begins with
parameters of the font, one per line, followed by a list of characters and widths. The file for font f is
/usr/lib/font/devname/f.

name str name of font is str
ligatures . . . 0 list of ligatures
spacewidth n width of a space on this font
special this is a special font
charset

- 30 -

list of character name, width, ascender/descender, code

The name and charset fields are mandatory; charset must be last. Comments are permitted, as are
other unrecognized parameters.

Each line following charset describes one character: its name, its width in units as described
above, ascender/descender information, and a decimal, octal or hexadecimal value by which the output
device knows it (the \N ‘‘number’’ of the character). The character name is arbitrary, except that ---
signifies an unnamed character. If the width field contains ", the name is a synonym for the previous char-
acter. The ascender/descender field is 1 if the character has a descender (hangs below the baseline, like y),
is 2 if it has an ascender (is tall, like Y), is 3 if both, and is 0 if neither. The value is returned in the ct reg-
ister, as computed by the \w function (§11.2).

Here are excerpts from a typical font description file for the same Postscript printer.

hy 33 0 45 hyphen \(hy
- " - is a synonym for \(hy

Q 72 3 81

a 44 0 97
b 50 2 98
c 44 0 99
d 50 2 100
y 50 1 121

em 100 0 208
--- 44 2 220 English pound currency symbol \N’220’
--- 36 0 221 centered dot \N’221’

This says, for example, that the width of the letter a is 44 units at point size 10, the value of unitwidth.
Point sizes are scaled linearly and rounded, so the width of a will be 44 at size 10, 40 at size 9, 35 at size 8,
and so on.

- 31 -

Tutorial Examples
Introduction

It is almost always necessary to prepare at
least a small set of macro definitions to describe a
document. Such common formatting needs as
page margins and footnotes are deliberately not
built into nroff and troff. Instead, the macro and
string definition, number register, diversion, envi-
ronment switching, page-position trap, and condi-
tional input mechanisms provide the basis for
user-defined implementations.

For most uses, a standard package like -ms
or -mm is the right choice. The next stage is to
augment that, or to selectively replace macros
from the standard package. The last stage, much
harder, is to write one’s own from scratch.

The examples discussed here are intended
to be useful and somewhat realistic, but will not
necessarily cover all relevant contingencies.
Explicit numerical parameters are used in the
examples to make them easier to read and to illus-
trate typical values. In many cases, number regis-
ters would really be used to reduce the number of
places where numerical information is kept, and
to concentrate conditional parameter initialization
like that which depends on whether troff or nroff
is being used.

Page Margins

As discussed in §3, header and footer mac-
ros are usually defined to describe the top and bot-
tom page margin areas respectively. A trap is
planted at page position 0 for the header, and at
–N (N from the page bottom) for the footer. The
simplest such definitions might be

.de hd \"define header
’sp 1i
.. \"end definition
.de fo \"define footer
’bp
.. \"end definition
.wh 0 hd
.wh -1i fo

which provide blank 1 inch top and bottom mar-
gins. The header will occur on the first page, only
if the definition and trap exist prior to the initial
pseudo-page transition (§3). In fill mode, the out-
put line that springs the footer trap was typically
forced out because some part or whole word
didn’t fit on it. If anything in the footer and
header that follows causes a break, that word or
part word will be forced out. In this and other
examples, requests like bp and sp that normally

cause breaks are invoked using the no-break con-
trol character ’ to avoid this. When the
header/footer design contains material requiring
independent text processing, the environment may
be switched, avoiding most interaction with the
running text.

A more realistic example would be

.de hd \"header

.if \\n%>1 \{\
’sp 0.5i-1 \"tl base at 0.5i
.tl ’’- % -’’ \"centered page number
.ps \"restore size
.ft \"restore font
.vs \} \"restore vs
’sp 1.0i \"space to 1.0i
.ns \"turn on no-space mode
..
.de fo \"footer
.ps 10 \"set footer/header size
.ft R \"set font
.vs 12p \"set baseline spacing
.if \\n%=1 \{\
’sp \\n(.pu-0.5i-1 \"tl base 0.5i up
.tl ’’- % -’’ \} \"first page number
’bp
..
.wh 0 hd
.wh -1i fo

which sets the size, font, and baseline spacing for
the header/footer material, and ultimately restores
them. The material in this case is a page number
at the bottom of the first page and at the top of the
remaining pages. The sp’s refer to absolute posi-
tions to avoid dependence on the baseline spac-
ing. Another reason for doing this in the footer is
that the footer is invoked by printing a line whose
vertical spacing swept past the trap position by
possibly as much as the baseline spacing. No-
space mode is turned on at the end of hd to render
ineffective accidental occurrences of sp at the top
of the running text.

The above method of restoring size, font,
etc., presupposes that such requests (that set pre-
vious value) are not used in the running text. A
better scheme is save and restore both the current
and previous values as shown for size in the fol-
lowing:

- 32 -

.de fo

.nr s1 \\n(.s \"current size

.ps

.nr s2 \\n(.s \"previous size

. --- \"rest of footer

..

.de hd

. --- \"header stuff

.ps \\n(s2 \"restore previous size

.ps \\n(s1 \"restore current size

..

Page numbers may be printed in the bottom mar-
gin by a separate macro triggered during the
footer’s page ejection:

.de bn \"bottom number

.tl ’’- % -’’ \"centered page number

..

.wh -0.5i-1v bn \"tl base 0.5i up

Paragraphs and Headings

The housekeeping associated with starting a
new paragraph should be collected in a paragraph
macro that, for example, does the desired prepara-
graph spacing, forces the correct font, size, base-
line spacing, and indent, checks that enough space
remains for more than one line, and requests a
temporary indent.

.de pg \"paragraph

.br \"break

.ft R \"force font,

.ps 10 \"size,

.vs 12p \"spacing,

.in 0 \"and indent

.sp 0.4 \"prespace

.ne 1+\\n(.Vu \"want more than 1 line

.ti 0.2i \"temp indent

..

The first break in pg will force out any previous
partial lines, and must occur before the vs. The
forcing of font, etc. is partly a defense against
prior error and partly to permit things like section
heading macros to set parameters only once. The
prespacing parameter is suitable for troff; a larger
space, at least as big as the output device vertical
resolution, would be more suitable in nroff. The
choice of remaining space to test for in the ne is
the smallest amount greater than one line (the .V
is the available vertical resolution).

A macro to automatically number section
headings might look like:

.de sc \"section

. --- \"force font, etc.

.sp 0.4 \"prespace

.ne 2.4+\\n(.Vu \"want 2.4+ lines

.fi
\\n+S.
..
.nr S 0 1 \"init S

The usage is .sc, followed by the section head-
ing text, followed by .pg. The ne test value
includes one line of heading, 0.4 line in the fol-
lowing pg, and one line of the paragraph text. A
word consisting of the next section number and a
period is produced to begin the heading line. The
format of the number may be set by af (§8).

Another common form is the labeled,
indented paragraph, where the label protrudes left
into the indent space.

.de lp \"labeled paragraph

.pg

.in 0.5i \"paragraph indent

.ta 0.2i 0.5i \"label, paragraph

.ti 0
\t\\$1\t\c \"flow into paragraph
..

The intended usage is ‘‘.lp label ’’; label will
begin at 0.2 inch, and cannot exceed a length of
0.3 inch without intruding into the paragraph.
The label could be right adjusted against 0.4 inch
by setting the tabs instead with
.ta 0.4iR 0.5i. The last line of lp ends
with \c so that it will become a part of the first
line of the text that follows.

Multiple Column Output

The production of multiple column pages
requires the footer macro to decide whether it was
invoked by other than the last column, so that it
will begin a new column rather than produce the
bottom margin. The header can initialize a col-
umn register that the footer will increment and
test. The following is arranged for two columns,
but is easily modified for more.

.de hd \"header

. ---

.nr cl 0 1 \"init column count

.mk \"mark top of text

..

- 33 -

.de fo \"footer

.ie \\n+(cl<2 \{\

.po +3.4i \"next column; 3.1+0.3

.rt \"back to mark

.ns \} \"no-space mode

.el \{\

.po \\nMu \"restore left margin

. ---
’bp \}
..
.ll 3.1i \"column width
.nr M \\n(.o \"save left margin

Typically a portion of the top of the first page
contains full width text; the request for the nar-
rower line length, as well as another .mk would
be made where the two column output was to
begin.

Footnotes

The footnote mechanism to be described is
used by embedding the footnotes in the input text
at the point of reference, demarcated by an initial
.fn and a terminal .ef:

.fn
Footnote text and control lines...
.ef

In the following, footnotes are processed in a sep-
arate environment and diverted for later printing
in the space immediately prior to the bottom mar-
gin. There is provision for the case where the last
collected footnote doesn’t completely fit in the
available space.

.de hd \"header

. ---

.nr x 0 1 \"init footnote count

.nr y 0-\\nb \"current footer place

.ch fo -\\nbu \"reset footer trap

.if \\n(dn .fz \"leftover footnote

..

.de fo \"footer

.nr dn 0 \"zero last diver. size

.if \\nx \{\

.ev 1 \"expand footnotes in ev1

.nf \"retain vertical size

.FN \"footnotes

.rm FN \"delete it

.if "\\n(.z"fy" .di \"end overflow di

.nr x 0 \"disable fx

.ev \} \"pop environment

. ---
’bp
..

.de fx \"process footnote overflow

.if \\nx .di fy \"divert overflow

..

.de fn \"start footnote

.da FN \"divert (append) footnote

.ev 1 \"in environment 1

.if \\n+x=1 .fs \"if 1st, separator

.fi \"fill mode

..

.de ef \"end footnote

.br \"finish output

.nr z \\n(.v \"save spacing

.ev \"pop ev

.di \"end diversion

.nr y -\\n(dn \"new footer position,

.if \\nx=1 .nr y -(\\n(.v-\\nz) \
\"uncertainty correction

.ch fo \\nyu \"y is negative

.if (\\n(nl+1v)>(\\n(.p+\\ny) \

.ch fo \\n(nlu+1v \"didn’t fit

..

.de fs \"separator
\l’1i’ \"1 inch rule
.br
..

.de fz \"get leftover footnote

.fn

.nf \"retain vertical size

.fy \"where fx put it

.ef

..

.nr b 1.0i \"bottom margin size

.wh 0 hd \"header trap

.wh 12i fo \"footer trap->temp pos

.wh -\\nbu fx \"fx at footer position

.ch fo -\\nbu \"conceal fx with fo

The header hd initializes a footnote count
register x, and sets both the current footer trap
position register y and the footer trap itself to a
nominal position specified in register b. In addi-
tion, if the register dn indicates a leftover foot-
note, fz is invoked to reprocess it. The footnote
start macro fn begins a diversion (append) in
environment 1, and increments the count x; if the
count is one, the footnote separator fs is interpo-
lated. The separator is kept in a separate macro to
permit user redefinition.

The footnote end macro ef restores the
previous environment and ends the diversion after
saving the spacing size in register z. y is then
decremented by the size of the footnote, available

- 34 -

in dn; then on the first footnote, y is further
decremented by the difference in vertical baseline
spacings of the two environments, to prevent the
late triggering the footer trap from causing the last
line of the combined footnotes to overflow. The
footer trap is then set to the lower (on the page) of
y or the current page position (nl) plus one line,
to allow for printing the reference line.

If indicated by x, the footer fo rereads the
footnotes from FN in nofill mode in environment
1, and deletes FN. If the footnotes were too large
to fit, the macro fx will be trap-invoked to redi-
vert the overflow into fy, and the register dn will
later indicate to the header whether fy is empty.

Both fo and fx are planted in the nominal
footer trap position in an order that causes fx to
be concealed unless the fo trap is moved. The
footer then terminates the overflow diversion, if
necessary, and zeros x to disable fx, because the
uncertainty correction together with a not-too-late
triggering of the footer can result in the footnote
rereading finishing before reaching the fx trap.

A good exercise for the student is to com-
bine the multiple-column and footnote mecha-
nisms.

The Last Page

After the last input file has ended, nroff and
troff invoke the end macro (§7), if any, and when
it finishes, eject the remainder of the page. Dur-
ing the eject, any traps encountered are processed
normally. At the end of this last page, processing
terminates unless a partial line, word, or partial
word remains. If it is desired that another page be
started, the end-macro

.de en \"end-macro
\c
’bp
..
.em en

will deposit a null partial word, and produce
another last page.

- 35 -

Special Character Names
The following table lists names for a set of characters, most of which have typically been available

with troff. Not all print on any particular device, including this one.

´ \’ µ \(*m ∼− \(|=
` \‘ ν \(*n ∼ \(ap
— \(em ξ \(*c ≠ \(!=
- \- ο \(*o → \(->
- \(hy π \(*p ← \(<-
– \- ρ \(*r ↑ \(ua
• \(bu σ \(*s ↓ \(da

\(sq ς \(ts × \(mu
_ \(ru τ \(*t ÷ \(di
1⁄4 \(14 υ \(*u ± \(+-
1⁄2 \(12 φ \(*f ∪ \(cu
3⁄4 \(34 χ \(*x ∩ \(ca
fi \(fi ψ \(*q ⊂ \(sb
fl \(fl ω \(*w ⊃ \(sp
ff \(ff Α \(*A ⊆ \(ib
ffi \(Fi Β \(*B ⊇ \(ip
ffl \(Fl Γ \(*G ∞ \(if
° \(de ∆ \(*D ∂ \(pd
† \(dg Ε \(*E ∇ \(gr
′ \(fm Ζ \(*Z ¬ \(no
¢ \(ct Η \(*Y ∫ \(is
 \(rg Θ \(*H ∝ \(pt
 \(co Ι \(*I ∅ \(es
+ \(pl Κ \(*K ∈ \(mo
− \(mi Λ \(*L  \(br
= \(eq Μ \(*M ‡ \(dd
∗ \(** Ν \(*N \(rh
§ \(sc Ξ \(*C \(lh
´ \(aa Ο \(*O \(bs
` \(ga Π \(*P | \(or
_ \(ul Ρ \(*R \(ci
/ \(sl Σ \(*S  \(lt
α \(*a Τ \(*T  \(lb
β \(*b Υ \(*U  \(rt
γ \(*g Φ \(*F  \(rb
δ \(*d Χ \(*X  \(lk
ε \(*e Ψ \(*Q  \(rk
ζ \(*z Ω \(*W  \(bv
η \(*y √ \(sr  \(lf
θ \(*h  \(rn  \(rf
ι \(*i ≥ \(>=  \(lc
κ \(*k ≤ \(<=  \(rc
λ \(*l ≡ \(==

