
A Minicomputer Satellite Processor System

H. Lycklama

C. Christensen

• ABSTRACT

A software support system for a network of minicomputers and micro­
computers is described. A powerful time-sharing system on a central computer
controls the loading, running, debugging and dumping of programs in the satel­
lite processors. The fundamental concept involved in supporting these satellite
processors is the extension of the central processor operating system to each
satellite processor. Software interfaces permit a program in the satellite proces­
sor to behave as if it were running in the central processor. Thus, the satellite
processor has access to the central processor's 1/0 devices and file system yet
has no resident operating system. The implementation of this system was con­
siderably simplified by the fact that all processors, central and satellite, belong
to the same family of computers (DEC PDP-11 series). We describe some
examples of how the SPS system is used in various projects at Bell Labora­
tories.

C ••C,.• •• ,,,,,_ . .'•.•,- . ,/ f.,.., •. ,~- ,_, , _ _ ••~ ·••

';, __ .,,;,;

-~~

A Minicomputer Satellite Processor System

H. Lyck/ama

C. Christensen

•;·:::_·::·.';'::,_\

I
-~ 11
'~\-';:~-
:~:.;1,/f;)/~:

·~

I

1. Introduction
The satellite processor system (SPS) and the concept of a satellite processor have evolved

over the years at Bell Labs in order to provide software support for the ever-increasing number
of mini- and microcomputer systems being used for dedicated applications. The satellite pro­
cessor concept allows the advantages of a large computing system to be extended to many
attached mini-processors, giving each satellite processor (SP) access to the central processor's
(CP) file system, software tools and peripherals while retaining the real-time response and flexi­
bility of a dedicated minicomputer. Since the cost of the peripherals for a minicomputer often
far exceeds the cost of its CPU and memory, the CP provides a pool of peripherals for the sup­
port of many SP's. Although each SP requires a hardware link to a CP, the idea of a satellite
processor is basically a software concept. It allows a user program, which might normally run in
the CP using its operating system, to run in a SP with no resident operating system.

This paper describes the hardware and software required for SPS, the concepts involved in
SPS and how these concepts can be extended to provide even more powerful tools for the SP.
Several examples of the use of the SPS system in Bell Telephone Laboratory projects are
described.

2. Hardware Configuration
The particular SPS hardware configuration described here consists of a DEC PDP-11/45

central computer (1) with a number of satellite processors attached using a serial 1/0 loop (2)
as one of the communication links between the SP's and the CP (see Figure 1). Other satellite
processors are attached using DRllC, DLll and DHll devices (see below). Each SP is a
member of the DEC PDP-11 family of computers, with its own set of special I/0 peripherals
and at least 4K 16-bit words of memory. A local control terminal is optional. The central com­
puter has 112K 16-bit words of main memory and 96 megabytes of on-line storage, Eight dial­
up lines and various other terminals are available for interaction with the UNIX time-sharing
system (3), supported by the MERT operating system (4). Magnetic tape is available as one
peripheral device for off-line storage of files. Access to line printers, punched card equipment
and hard-copy graphics devices is available through the connection to the central computing
facility for Bell Laboratories.

3. Communication Links
A number of satellite processor systems have been installed in various hardware

configurations using both the UNIX and the MER T operating systems. The devices supported
as communication links include the serial 1/0 loop mentioned above, the DLl 1 asynchronous
line interface unit and the DHl 1 multiplexed asynchronous line interface unit. These are all
essentially character-at-a-time transfer devices. The asynchronous line units may be run up to a
baud rate of 9600. The most efficient communication link is the UNIBUS link device which is
a direct memory access device permitting a transfer rate of 100,000 words per second. How­
ever, the device limits the inter-processor distance to 150 feet. Another efficient link is the

UNIX is a Trademark of Bell Laboratories.

- 2 -

·,., :,.,.,_,·,
'·····~- .; -~_·;.

•
, . .- -·.·,.· ..

,.~

i ---~-·---""!.·''II

DRl lC device which permits word-at-a-time transfers. Its actual transfer rate is limited by
software to about 10,000 words per second.

The choice of communication link is based on the distance between the SP and the CP,
data transfer rate requirements and cost of the link. The 1/0 loop allows a SP to be placed at
least 1000 feet from the CP and supports a data transfer rate of 3000 words per second. Thus a
SP with 16K words of memory can be loaded in 5 seconds.

4. SP Software
The satellite processor concept extends an operating system on a CP to multiple SP's. In

an operating system such as the UNIX system, the interface or communication between a user
program and the system is by means of the system call. These UNIX system calls manipulate
the CP file system and other resources managed by the operating system. In the SP concept,
the interface between a user program running in the SP and the operating system which is
being emulated by the central processor is also the system call (see Figure 2). Only here the
extension is achieved by trapping the system call in the SP and passing the system call and its
arguments to the CP. A process running in the CP on behalf of the SP then executes the sys­
tem call and passes the results back to the SP. Control is then returned to the SP user pro­
gram. Each SP executes a program locally, has access to the CP's file system and peripherals by
means of the system call and yet does not contain an operating system. This technique of parti­
tioning a program at the UNIX system call level provides a clean, well-defined communication
interface between the processors.

The local SP software required to support SPS consists of two small functional modules, a
communication package and a trap handler. The communication package transfers data
between the SP and the CP on behalf of the program running in the SP. The trap handler
catches processor traps (including system call traps) within the SP on behalf of the SP user pro­
gram and determines whether to handle them locally or transmit the trap to the CP via the
communication package.

4.1. SP Communication Package
The satellite processor communication package resides in the SP at the top of available

memory and occupies less than 300 words. Actual size depends on the communication link
used. The communication package normally resides in read-only memory. The functional
requirements of the communication package include CP-SP link communication protocol, inter­
preting and executing CP commands, and sending trap conditions to the CP. The basic element
of communication over a CP-SP link is an 8 bit byte and messages from the CP to the SP are
variable length strings of bytes containing commands and data. The SP communication package
is able to distinguish commands from data by scanning for a special prefix byte. This prefix
byte is followed by one of five command code bytes. The following is a list of the five com­
mands and their arguments which can be sent from the CP to the SP.

read memory
write memory
transfer
return
terminal i/o

Each argument is two bytes (16 bits) and is sent twice, the second byte pair being the two's
complement of the first to insure error free transmission. Also the data following the read
memory and write memory commands has a checksum associated with it to guarantee proper
transmission. If within the byte stream of data, a data byte corresponds to the command prefix,
it is followed by an escape character to avoid treatment as a command.

address
address
address

nbytes
nbytes

This communication package is sufficient to enable the user at a SP terminal to communi­
cate with the CP as a standard login terminal. When the SP communication package is started,
it comes up in terminal i/o mode, passing all characters from the local SP terminal to the CP

- 3 -

over the communication link. In the reverse direction all CP output is printed on the local SP
terminal. The five communication commands listed above are only invoked when a program is
down-loaded and executed in the SP. The read memory and write memory commands are used
to read and write the memory of the SP, respectively, starting at the specified address,
address and continuing for nbytes bytes. The transfer command is used to force the SP to
transfer to a specified address in the SP program, normally the beginning of the program. The
return command is used to return control back to the SP at the address saved on the SP stack.
When the CP wishes to write on or read from the local SP terminal, the SP is given the terminal
ilo command.

I
_ ,. :_,··,

.· ;. ~- .. I:,

4.2. SP Trap Handler
The second functional module which must be loaded into the SP is the trap handler. It is

prepended to each program to be executed in the SP. This is the front-end package which must
be link-edited with the object code produced by a UNIX compiler. The trap handler catches all
SP traps and passes those that it cannot handle to the CP via the communication package. The
trap handler determines the trap type (and, in the case of system call or SYS traps, the type of
SYS trap). If the trap is an illegal instruction trap, the handler will determine if it has the capa­
bility to emulate this instruction, or whether it must be passed to the CP. If the trap is to be
passed to the CP, a five word communication area in the SP is filled with the state of the SP at
the time of the trap. The communication package causes an interrupt to occur in the CP,
thereby alerting the CP process running on behalf of the SP. The SP trap state is then read
from the communication area and upon processing this trap in the CP, the CP process passes
argument(s) back in the communication area of the SP. Control is then returned to the SP.

The trap handler also monitors the SP program counter and local SP terminal sixty times
per second using the sixty hertz clock in the satellite processor. This permits profiling of a pro­
gram running in the SP and controlling it from the local SP terminal. Upon detecting either a
rubout character (delete) or a control backslash character (quit) from the local SP terminal, a
signal is passed back to the CP, causing the SP program to abort if these signals are not handled
by the SP process. At the same time a check is made to see if there have been any delete or
quit signals from the CP process. If the SP has no local terminal, setting a -1 in the switch
register will turn control over to the CP process. If an undebugged program in the SP halts,
restarting it at location 2 will force an IOT trap to the system trap handler, which in turn causes
the memory of the SP to be dumped into a core file on the CP.

The trap handler consists of up to four separate submodules:

1. trap vectors, communication area, trap routines (400 words)
2. PDP-11/45 instruction emulation package (500 words)
3. floating point instruction emulation package (1000 words)
4. start up routine.

Of these, the first is always required. The illegal instruction emulation packages are loaded
from a library only if required. The start up routine depends on the options specified by the
user of the program to be loaded.

Estimates have been made of the execution time of the various emulation routines. The
times are approximate and assume a PDP-11/20 SP, a PDP-11/45 CP and an I/0 loop connect­
ing them.

The running times for the PDP-11/45 instructions emulated in the SP are as follows:

. ~-----------

- 4 -

Instruction PDP-11/ 20 PDP-11/45
mul (multiply) 830 usec. 3.8 usec.
div (divide) 1200 7.5
ash (shift) 660 1.5
ashc (double shift) 72 0 1.5
xor (exclusive or) 440 .85
sob (sub. and branch) 400 .85
sxt (sign extend) 400 .85

I
:·~f1~1
,--·-.:;":·4-··>';;,

~:·:J;Jt~½+.-
. ,:.fr:

If execution time is important in a SP program, these instructions should be avoided. In C pro­
grams these instructions are generated not only when explicit multiplies, divides and multiple
shifts are written, but also when referencing a structure in an array of structures. Using a
PDP-11/35 or PDP-11/40 with a fixed point arithmetic unit as a SP would reduce the execution
time for these instructions.

The average times to emulate floating point instructions in the SP are as follows:

I
Instruction PDP-11/20 PDP-11/45
add 2100 usec. 4 usec.
sub 2300 4
mul 3500 6
div 5600 8

- :,;:· -,;-.-,'-~-«
·'<-'·-.':·~>>: For applications which require large quantities of CPU time running Fortran programs, it is pos­

sible to use a PDP-11/45 CPU with a floating point unit as a SP.

5. CP Emulation of Traps
During the time that the SP is executing a program, the associated CP process is road­

blocked waiting for a trap signal from the SP. Upon receiving one, the CP process reads the
SP trap state from the communication area, decodes the trap and emulates it, returning results
and/or errors. A check is also made to see if a signal (quit, delete, etc.) has been received.

Of the more than 40 UNIX system calls (5) emulated, about 30 are handled by simply
passing the appropriate arguments from the SP to the CP process and invoking the correspond­
ing system call in the CP. The other 10 system calls require more elaborate treatment. Their
emulation is discussed in more detail here.

To emulate the signal system call, a table of signal registers is set aside in the CP process,
one for each possible signal handled by the UNIX system. No system call is made by the CP
process to handle this trap code. When a signal is received from the SP, this table is consulted
to determine the appropriate action to take for the CP process. The SP program may itself
catch the signals. If a signal is to cause a core dump, the entire SP memory is dumped into a
CP core file with a header block suitable for the UNIX debugger.

The stty and gtty system calls are really not applicable to the SP process, but if one is exe­
cuted, it will be applied to the CP process' control channel. The prof system call is emulated by
transferring the four arguments to the profile buffer in the SP memory. The SP, upon detect­
ing non-zero entries here during each clock tick (60 times per second), will collect statistics on
the SP program's program counter. Upon completion of the SP program, this data will be writ­
ten out on the mon.out file. The sbrk system call causes the CP process to write out zeroes in
the SP memory to expand the bss area available to the program. An exit system call changes
the communication mode between the SP and the CP back to the original terminal operation
mode. It then causes the CP process to exit giving the reason for the termination of the SP
program.

- ·---- -------------·· ··--·-- --- ---------······----·-

- 5 -

The three most time-consuming system calls to emulate are read, write and exec. The exec
system call involves loading the executable file into the SP memory, zeroing out the data area
in the SP memory and setting up the arguments on the stack in the SP. A system read call
involves reading from the appropriate file and then transfering this data into the SP buffer. The
system write call is just the reverse procedure.

The fork, wait and pipe system call emulations have not been written at this time and are
trapped if executed in a SP. One possible means of emulating the fork call would be to copy an
image of the parent process in one SP into another SP, permitting the pipeing of data between
two SP's.

I
";':'~lZfy(;,
-- ''.~_;_,..,,~

. -~·.,' :\ --.~ :;_"

-'.~-~.;-;::~-::r
~,_~\;;.~;.f.~"' :'-

t~(it;:/}\

I
-.;:.

6. Typical Session
Supporting a mini PDP-11 as a SP on a CP running the UNIX system combines all the

advantages of the UNIX system programming support with the real time response and
economic advantage of a stand-alone PDP-11. In a typical SP programming session, a program­
mer sitting at the local SP terminal logs into the CP and uses the UNIX editor to update a SP
program source file. It could be a~sembly language or one of the higher level languages avail­
able on the UNIX system (C, LIL , FORTRAN). Assume a C source file "prog.c". When the
edit is complete the following commands are issued:

% cc -c prog.c
% ldm -me prog.o
% 111 a.out

"cc -c" compiles the C program "prog.c" in the CP and produces the object file "prog.o". "ldm
-me" combines the SP trap handler (-m) and instruction emulator (e) with the C object file
"prog.o", generating an "a.out" object file. "111" loads the "a.out" file into the SP, and starts it
with the SP terminal as the standard input and output. The programmer then observes the
results of running the program or forces a core dump, and uses the UNIX debugger to examine
it. If any program changes are required the preceding steps are repeated. During this typical
SP support sequence the programmer initiates the editing, compiling, loading, running, and
debugging of a program on a mini PDP-11 without leaving its control terminal. It is the speed
and convenience of this procedure along with the availability of high level languages which
makes the Satellite Processor concept a powerful mini PDP-11 support tool.

7. Uses
Some SP's may be disconnected from the CP when their software has been developed and

the final product is a "stand-alone" system. Other SP's may always have a CP connection; they
supply the real-time response unavailable from the CP, combined with access to the CP's
software base, file system, peripherals and connection to the computing community.

One use of the SPS system is discussed in a paper in this issue (7). Here LSI-11 micro­
computers connected to a CP by means of a DHl 1 device are used in a materials research
laboratory, remote from the CP, to collect data, control apparatus and machinery and analyze
the results.

One of the more interesting applications of the satellite processor system is the use of it to
support a Digital Sound Synthesizer System. The hardware consists of an LSI-11 processor with
24K words of memory, two floppy disks, a TV raster scan terminal and much more special digi­
tal circuitry interfaced to the LSI-11 Q-bus to provide the control of the DSSS system. The
heart of the software consists of a multi-tasking system designed to handle about a hundred
processes (8). The basic program directs the machine's output devices such as oscillators,
filters, multipliers and a reverberation unit. The data for the program is stored and retrieved
from the floppy disk. The SPS system is used to download programs from the CP and produce

LIL is a little implementation language for the PDP-11.

- 6 -

•
. :>·-.~.:-'

-/ij0~:i;.

I

core dumps of the LSl-11 memory back at the CP for debugging purposes. The CP is also used
for program development.

8. Summary
The advantages of the SPS system are the use of higher level languages, ease of program

development and maintenance, use of debugging tools, interactive turn-around, use of a com­
mon pool of peripherals, access to files on the CP secondary storage and connection to central
computing facilities. The SP requires a minimum amount of memory since it does not contain
an operating system or other supporting software. One additional advantage is that any SP may
be located in a remote lab location.

The ability to extend an operating system to a SP may be used for purposes other than
supporting software development for the SP. A new operating system environment may be
defined by rewriting the CP process which acts on behalf of the SP program. In this way a new
set of "system calls" emulating another operating system may be extended to a SP. SP's other
than PDP-11 's may also be supported by writing an appropriate SP communication package and
CP interface package. Cross compilers would be required on the CP to support software
development for these non-PDP-11 processors.

Another avenue of research which has not yet been explored with the SPS concept is that
of distributed computing. With a powerful SP, e.g. PDP-11/45, a compute-bound program
could run on the SP rather than on the CP itself, thereby transferring the real-time load from
the CP to the SP. The CP would only be called upon to load the program initially and to satisfy
certain file requests. The total computing power of the system would increase greatly without
duplicating the entire computer system.

- 7 -

I
•

References
1. DEC PDP-11 Processor Handbook, 1975.

2. D. R. Weller, "A Loop Communication System for 1/0 to a Small Multi-User Computer",
Proc. of 1971 IEEE International Computer Society Conference, Sept. 1971, Boston.

3. K. Thompson and D.M. Ritchie, The UNIX Time-Sharing System. Comm. ACM 17,
(July 1974), p365; also this issue.

4. H. Lycklama and D. L. Bayer, "The MERT Operating System", this issue.
5. K. Thompson and D. M. Ritchie, "UNIX Programmer's Manual, Sixth Edition", May,

1976.
6. H. Lycklama, "UNIX on a Microprocessor", this issue .
7. B. C. Wonsiewicz, A. R. Storm and J. D. Sieber, "UNIX Microcomputer Control of

Apparatus, Machinery and Experiments", this issue.
8. D. L. Bayer, "Real-Time Software for Digital Music Synthesizer", Proc. of the Second

International Conference of Computer Music, San Diego, October 1977 .

..
'

DIAL-UP
CONNECTIONS 96

MEGABYTES
OF

SECONDARY

TERMINAL

..,, - Ci)
C: ::a
l"TI

SATELLITE
PROC~SSOR

DL11~--a_--,
.,__....., LSl-11,....., CENTRAL

PROCESSOR-....,
---.____, LSl-11 .,_DR_11_,,C'--p_o_P--r11_/ 4_5_ CONTROLLER

SERIAL
J/0 LOOP

TERMINAL

DH11

PDP- s----,
11/10

PDP- 1----,
11/40

.... ~...,
11/20

z

PDP- .___...,
11/10

PDP- .,__...,
...___, 11/10 '-----

---.., LSl-11 ..._...,
.__ __

fi)SATEIIJIE 'PROCESSO
lffi-: ,·

111'1 \ i'.' -{,, ~_; :

·r:;rr
NORMAL COMPUTErtfit{

SYSTEM! t :;;
. ','J '. :_ ~ i

) .

USER;
PROGRAM

I

I!
I
I

i;SYSTEM, • ... CALL ., i:

OPERATING:
SYSTEM~

-···1

I
I
I
I
I
I
I
I
I
I
I
I
I

FIGURE

·,USER
.PROGRAM1

INTERFACE
SOFTWARE'

OPERATING'
SYSTEM'

)

SATELLITE'
PROCESSOR'

INTERFACE1

PROGRAM - .. -.~~., , CENTRAL
1.-~ • PROCESSOR

