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Memorandum for File 

1. Introduction 

MERT is an executive which provides a more conducive en­ 

vironment for the implementation of operating systems than a raw 

machine. The executive establishes an, extended instructions set 

via system primitives vis-a-vis the virtual machine approach of 

CP 67. Operating systems are implemented on top of MERT and 

define the services available to user programs. The operating 

systems are independent. Communication and synchronization primi­ 

tives and shared memory permit varying degrees of co-operation 

between independent operating systems. 

The MERT system runs on the DEC PDP-11/45 and PDP-11/70 com­ 

puters (1). It requires all three processor modes (kernel, su­ 

pervisor and user) and both the instruction (1) and data (D) 

address spaces provided by these machines. The system consists 

of a number of levels of software as described in a previous 

paper (2), in which each higher level has fewer access permis­ 

sions than the level below it. The basic kernel procedures exist 
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in the first level (Figure 1); they implement the system primi­ 

tives. The second level of software consists of privileged 

kernel-mode processes which have access to the device registers 

but not to sensitive system data. The various operating system 

supervisors run at the third software level and provide the en­ 

vironment which the user sees. At the highest software level are 

the actual user application programs. 

One of the basic design goals of the system was to build 

modular and independent processes having data structures and 

tables which are known only to the particular process. Fixing a 

"bug" or making major internal changes in one process does not 

affect the other processes with which it communicates. The work 

described here builds on previous operating system designs 

described by Dijkstra (3) and Brinch Hansen (4). The primary 

differences between this system and previous work lies in the 

rich set of inter-process communication techniques and the exten­ 

sion of the concept of independent modular processes, protected 

from other processes in the system, to the basic 1/0 and real 

time processes. It can be shown that messages are not an ade­ 

quate communication path for some real-time problems (5). Con­ 

trolled access to shared memory, and software generated inter­ 

rupts are often required to maintain the integrity of a real time 

system. The communication primitives were selected in an attempt 

to balance the need for protection with the need for real time 

response. The pri11itives include event flags, message buffers, 

inter-process system traps, process ports and shared segments. 
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This paper gives a detailed description of the system design 

including the basic kernel, and a definition and description of 

processes and of segments. A detailed discussion of the communi­ 

cation primitives follows. The structure of the file system is 

then discussed along with how the file manager and time-sharing 

processes make use of the communication primitives. Some trade­ 

offs are given that have been made for efficiency reasons thereby 

sacrificing some protection. 

also included here. 

Some operational statistics are 

2. Segments 

We define a logical segment as a piece of contiguous memory, 

32 to 32K 16-bit words long, which can grow in increments of 32 

words. Associated with each segment are 

identifier and an optional global name. 

an internal segment 

The segment identifier 

is allocated to the segment when it is created and is used for 

all references to the segment. The global name uniquely defines 

the initial contents of the segment. A segment is created on 

demand and disappears when all processes which are linked to it 

are removed. The contents of a segment may be initialized by 

copying all or part of a file into the segment. Access to the 

segment can be controlled by the creator (parent) as follows: 

1) The segment can be private - that is, available only to 

the creator. 

2) The segment can be shared by the creator and some or all 

of its descendents (children). This is accomplished by 

passing the segment id to a child. 
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3) The segment can be given a name which is available to all 

processes in the system. The name is a unique 32-bit 

number which corresponds to the actual location on secon­ 

dary storage of the initial segment data. Processes 

without a parent-child relationship can request the name 

from the file system and then attempt to create a segment 

with that name. If the segment exists, the segment id is 

returned and the segment user count is incremented. 

Otherwise the segment is created and the process initial­ 

izes it. 

For efficiency, reentrant code segments of frequently exe­ 

cuted programs are often shared. On the other hand data segments 

are usually private and are not shared. 

3. Processes 

A process is a collection of related logical segments exe­ 

cuted by the processor (2). Processes are divided into two 

classes, kernel and supervisor, according to the mode of the pro­ 

cessor while executing the segments of the process. 

Kernel processes are driven by software and hardware inter­ 

rupts, execute at processor hardware priority 3 to 7 (0 being the 

lowest and 7 the highest priority), are locked in memory, and are 

capable of executing all privileged instructions. Kernel 

processes are used to control peripheral devices and handle func­ 

tions with stringent real-time response requirements. The virtu­ 

al address space of each kernel process begins with a short 

header which defines the virtual address space and various entry 
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points (see Figure 2). Up to 12K words (segmentation registers 3 

5) of instruction space and 12K words of data space are avail­ 

able. All kernel processes share a common stack and can read and 

write the I/0 registers. 

To reduce duplication of common subprograms used by indepen­ 

dent kernel processes and to provide common data areas between 

independent cooperating kernel and supervisor processes, three 

mechanisms for sharing segments are available. 

The first type of shared segment, called the system library, 

is available to all kernel processes. The routines included in 

this library are determined by the system administrator at system 

generation time. The system library begins at virtual address 

140000(8) (segmentation register 6) and is present whether or not 

it is used by any kernel processes. 

The second type of shared segment, called a public library, 

is assigned to segmentation registers four or five of the process 

instruction space. References to routines in the library are 

satisfied when the process is formed, but the body of the segment 

is loaded into memory only when the first process which accesses 

it is loaded. Public libraries may be pure code or may contain 

data areas for inter-process communication. A process may share 

the system library as well as a public library simultaneously. 

A third sharing mechanism allows a parent to pass the id of 

a segment that is included in the address space of a kernel pro­ 

cess when it is created. This form of sharing is useful when a 

hierarchy of cooperating processes is invoked to accomplish a 
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task. 

All processes which execute in supervisor mode and user mode 

are called supervisor processes. These processes run at proces­ 

sor priority zero or one and are scheduled by the kernel 

scheduler process. The segments of a supervisor may be kept in 

memory, providing response on the order of several milliseconds, 

or supervisor segments may be swappable, providing a response 

time of hundreds of milliseconds. 

The virtual address space of a supervisor consists of 32K 

words of instruction space and 32K words of data space in both 

supervisor and user modes. Of this 128K, at least part of each 

of three segmentation registers (12K) must be used for access to: 

1) the process control block, a segment typically 128 words 

long, which describes the entire virtual address space of 

the process to the kernel and provides space to save the 

state of the process during a context switch. 

2) the process supervisor stack and data segment. 

3) the read-only code segment of the supervisor. 

The rest of the address space is controlled by the supervisor 

through EMT traps to the kernel. Figure 3 illustrates the virtu­ 

al memory layout of a time-sharing supervisor described in a 

later section. 

4. The Kernel 

The kernel consists of a process dispatcher, a trap handler, 

and routines (procedures) which implement the system primitives. 

Approximately 4.SK words of code are dedicated to these modules. 
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The process dispatcher is responsible for saving the current 

state and setting up and dispatching to all kernel processes. It 

can be invoked by an interrupt from the programmed interrupt 

register, an interrupt from an external device, or an inter­ 

process system trap from a supervisor process (an EMT trap). 

The trap handler fields all traps and faults and, in most 

cases, transfers control to a trap handling routine in the pro­ 

cess which caused the trap or fault. For the purposes of debug­ 

ging, the "break point trap" executed from supervisor or kernel 

mode will cause an image of the process to be written in a file 

and the process to be terminated. 

The kernel primitives can be grouped into eight logical 

categories. These categories can be subdivided into those which 

are available to all processes and those which are available only 

to supervisor processes. The primitives which are available to 

all processes are: 

1) Interprocess communication and synchronization primi­ 

tives. These include sending and receiving of messages 

and events, manipulation of process ports, waking up 

processes which are sleeping on a bit pattern, and set­ 

ting the sleep pattern. 

2) Attaching to and detaching from interrupts. 

3) Setting a timer to cause a time-out event. 

4) Manipulation of segments for the purposes of I/0. This 

includes locking and unlocking segments and marking seg­ 

ments altered. 

5) Setting and getting the time of day. 
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The primitives available only to supervisor processes are: 

6) Primitives which alter the attributes of the segments of 

a process. These primitives include creating new seg­ 

ments, returning segments to the system, adding and 

deleting segments from the process address space, alter­ 

ing the access permissions, and turning supervisor and/or 

user o-space registers on or off. 

7) Altering scheduler-related parameters by road blocking, 

changing the scheduling priority, or making the segments 

of the process nonswap or swappable. 

8) Miscellaneous services such as reading the console 

switches. 

Closely associated with the kernel are the memory management 

and scheduler processes. These two processes are special in that 

they reside in the kernel segments. In all other respects they 

follow the discipline established for kernel processes. 

The memory manager process communicates with the rest of the 

system via messages and is capable of handling three types of 

requests: 

1) Setting the segments of a process into the active state, 

making space by swapping or shifting other segments if 

necessary. 

2) Loading and locking a segment contiguous with other 

locked segments to reduce memory fragmentation. 

3) Dea~tivating the segments of a process. 

The scheduler process is responsible for scheduling all 

supervisor-mode processes. The scheduler utilizes time-sliced, 
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round robin and preemptive priority scheduling techniques. The 

main responsibility of the scheduler is to select the next pro­ 

cess to be executed. The actual loading of the process is accom­ 

plished by the memory manager. 

5. Inter-Process Communication 

A structured system requires a well-defined set of communi- 

cation primitives to achieve inter-process communication and 

synchronization. The MERT system makes use of the following com­ 

munication primitives to achieve this end: 

( l) event flags 

(2) message buffers 

(3) EMT traps 

(4) shared memory 

(5) files 

(6) process ports 

Each of these is discussed in further detail here. 

5.1 Event Flags 

Event flags are an efficient means of communication between 

processes for the transfer of small quantities of data. Of the 

16 possible event flags per process, eight are predefined by the 

system for the following events: wakeup, timeout, message ar­ 

rival, hangup, interrupt, quit, abort and initialization. The 

other eight event flags are definable by the processes using the 

event flags as a means of communication. Events are sent by 

means of the kernel primitive: 
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event(procid, event) 

Sending an event causes the system to set the appropriate bit for 

the process and trigger the programmed interrupt register at the 

processor priority of the receiving process. When control is 

passed to the process at its event entry point the event flags 

are in its address space. Supervisor processes may selectively 

inhibit the receipt of particular events or may choose to ignore 

all events. This communication primitive is invoked for effi­ 

cient process synchronization. 

5.2 Message Buffers 

The use of message buffers for inter-process communication 

was introduced in the design of the RC4000 operating system (4). 

The SUE project ( 6) al so us e o c1 ue s s aqe sending f ac il i ty and the 

related device called a mailbox to achieve process synchroniza­ 

tion. We introduce here a set of message buffer primitives which 

provide an efficient means of inter-process communication and 

synchronization. 

A kernel pool of message buffers is provided, each of which 

may be up to a multiple of six times 16 words in size. Each mes­ 

sage consists of a seven word header and the data being sent to 

the receiving process. The format of the message is specified in 

Figure 4. The primitives available to a process consist of: 

alocmsg(nwords) 

queuem(message) 

queuemn(message) 
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dequeuem(process) 

dqtype(process) 

messink(message) 

freemsg(message) 

To open a communication channel between two processes Pl and P2, 

Pl must allocate a message buffer using alocmsg, fill in the 

appropriate data in the message header and data areas and then 

send the message to process P2 using queuem. Efficiency is 

achieved by allowing Pl to send multiple messages before waiting 

for an acknowledgement (answer). The acknowledgement to these 

messages is returned in the same buffer by means of the messink 

primitive. The message buffer address space is freed up automat­ 

ically if the message is an acknowledgement to an acknowledge- 

ment. Buffer space may also be freed explicitly by means of the 

freemsg primitive. When no answer is expected back from a pro­ 

cess, the queuemn primitive is used. 

Synchronization is achieved by putting the messages on P2's 

message input queue using the link word in the message header and 

sending P2 a message event flag. This will immediately invoke 

the scheduling of process P2 if it runs at a higher priority than 

Pl. Process Pl is responsible for filling in the from process 

number, the!£ process number, the~ and the identifier fields 

in the message header. The ill! field specifies which routine P2 

must execute to process the message. A type of '-1' is reserved 

for acknowledgement messages to the original sender of the mes- 

sage. The status of the processed message is returned in the 
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status field of the message header, a non-zero value indicating 

an error. The status of -1 is reserved for use by the system to 

indicate that process P2 does not exist or was terminated abnor­ 

mally while processing the message. The sequence number field is 

used solely for debugging purposes. The identifier field may be 

planted by Pl to be used to identify and verify acknowledgement 

messages. This word is not modified by the system. 

Process P2 achieves synchronization by waiting for a mes­ 

sage. In general a process may receive any message type from any 

process by means of the dequeuem primitive. However P2 may re­ 

quest a message type by means of dqtype in order to process mes­ 

sages in a certain sequence for internal process management. In 

each case the kernel primitive will return a success/fail condi­ 

tion. In the case of a fail return, P2 has the option of road­ 

blocking to wait for a message event or of doing further process­ 

ing and looking for an input message at a later time. 

5.3 ~ Traps 

EMT traps provide a 

supervisor-user processes 

between kernel processes 

means of passing information between 

and the basic kernel, as well as 

and the basic kernel. They are used 

primarily to provide a level of protection between processes, and 

between processes and the kernel. In this case the EMT traps are 

synchronous, that is they are handled by the currently running 

process. 

A few EMT traps in the MERT system are reserved for inter- 
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process communication. In particular, the kernel character dev­ 

ice driver processes have an EMT entry point to catch EMT's from 

other processes. These processes handle the read, write, getty 

and setty EMT's ( getty and setty get and set the modes of the 

user's teletype channel respectively). In the case of the read 

and write EMT'S, the traps must specify process number, channel, 

I/0 segment, offset into the segment and the byte count. Normal­ 

ly the data transfer is directly to/from the user's address 

space. This provides an efficient means of transferring large 

amounts of data between co-operating processes. 

5.4 Shared Memory 

There are cases where transfers of large quantities of data 

between processes are not necessary. In this case a shared piece 

of memory or a shared segment is suitable for achieving inter- 

process communication. In the implementation of the kernel the 

common pool of message buffers provides a shared piece of memory 

through which processes may communicate. The sharing of library 

segments in the kernel has been discussed previously. 

Supervisor-user processes may share memory by means of named 

as well as unnamed segments. Segments may be shared on a super­ 

visor as well as a user level. In both cases pure code is shared 

as named segments. In the case of a time-sharing supervisor 

(described in a later section), a segment is shared for I/0 

buffers and file descriptors. A shared segment is also used to 

implement the concept of a~ (7), which is an inter-process 

channel used to communicate streams of data between related 
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processes. At the user level related processes may share a seg­ 

ment for the efficient communication of a large quantity of data. 

For related processes, a parent process may set up a shareable 

segment in his address space and restrict the access permissions 

of all child processes to provide a means of protecting shared 

data. Facilities are also provided for sharing segments between 

unrelated supervisors and between kernel and supervisor 

processes. 

5.5 Files 

The file system has a hierarchical structure equivalent to 

the UNIX file system (7) and as such has certain protection keys 

(see &6). Most files have general read/write permissions and the 

contents are shareable between processes. The file system struc­ 

ture is controlled completely by the file manager process. All 

processes may communicate with the file manager via message prim­ 

itives. 

In some cases the access permissions of the file may itself 

serve as a means of communication. If a file is created with 

read/write permissions for the owner only, another process may 

not access this file. This is a means of making that file name 

unavailable to a second process. 

5.6 Process Ports 

Knowing the identity of a process gives another process the 

ability to communicate with it. The identity of certain key 

processes must be known to all other processes at system startup 
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time to enable communication to occur. These globally known 

processes include the scheduler, the memory manager, the process 

manager, the file manager and the swap device driver process. 

These comprise a sufficient set of known processes to start up 

new processes which may then communicate with the original set. 

Device driver processes are created dynamically in the sys­ 

tem. They are in fact created, loaded and locked in memory upon 

opening a "device" file (see &6). The identity of the device 

driver process is returned by the process manager to the file 

manager which in turn may return the identity to the process 

which requested the opening of the "device" file. These 

processes are referred to as "external" processes by Brinch Han­ 

sen (4). 

The above process communication primitives do not satisfy 

the requirements of communication between unrelated processes. 

For this reason the concept of process ports has been introduced 

in the MERT system. A process port is a globally known "device" 

to which a process may attach itself in order to communicate with 

"unknown" processes. A process may connect itself to a port, 

disconnect itself from a port or obtain the identity of a process 

connected to a specific port. Once a process identifies itself 

globally by connecting itself to a port, other processes may com­ 

municate with it by sending messages to it through the port. The 

port thus serves as a two-way communication channel. It is a 

means of communication for processes which are not descendents of 

each other. 
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One process port in the system is used to communicate with 

an error logger process. At system startup time the error logger 

process connects itself to a process port. All device driver 

processes upon detecting a device error send an error diagnostic 

message through the error logger process port. This error logger 

records the pertinent error information in a file along with the 

date and time of occurrence of the error. 

6. File Sfstem 

The multi-environment as well as the real-time aspects of 

the MERT system require that the file system structure be capable 

of handling many different types of requests. Time-sharing ap­ 

plications require that files be both dynamically allocatable and 

dynamically growable. Real-time applications require that files 

be large and possibly contiguous1 dynamic allocation and growth 

are usually not required for real-time applications. 

For data base management systems, files must be very large 

and it is often advantageous that files be stored in one contigu­ 

ous area of secondary storage. Such large files are efficiently 

described by a file-map entry which consists of starting block 

number and number of consecutive blocks (a two-word extent). A 

further benefit of this allocation scheme is that file accesses 

require only one access to secondary storage. Another commonly 

used scheme, using indexed pointers to blocks of a file in a 

file-map entry, may require more than one access to secondary 

storage to read or write a block of a file. However, this latter 

organization is usually quite suitable for time-sharing 
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applications. The disadvantage of using two-word extents in the 

file-map entry to describe a dynamic time-sharing file is that 

this may lead to secondary storage fragmentation. In practice 

the efficient management of the in-core free extents reduces 

storage fragmentation significantly. 

The MERT file system is similar to the UNIX file system (7) 

in many respects. Three kinds of files are discernible to the 

user: ordinary disk files, directories and special files. The 

directory structure is identical to the UNIX file system directo­ 

ry structure. Directories provide the mapping between the names 

of files and the files themselves and induce a hierarchical nam­ 

ing convention on the files. A directory entry contains only the 

name of the file and a file identifier which is essentially a 

pointer to the file-map entry for that file. A file may have 

more than one link to it, thus enabling the sharing of files. 

Special files in MERT are associated with each I/0 device. 

The opening of a special file causes the file manager to send a 

message to the process manager to create and load the appropriate 

device driver process and lock it in memory. Subsequent reads 

and writes to the file are translated into read/write messages to 

the corresponding I/0 driver process by the file manager process. 

In the case of ordinary files, the contents of a file are 

whatever the user puts in it. The file system process imposes no 

structure on the contents of the file. 

The MERT file system distinguishes between contiguous files 
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and other ordinary files. Contiguous files are described by one 

extent and the file blocks are not freed until the last link to 

the file is removed. Ordinary files may grow dynamically using 

up to 27 extents to describe their secondary storage allocation. 

To minimize fragmentation of the file system a growing file is 

allocated 40 blocks at a time. Unused blocks are freed when the 

file is closed. 

The list of free blocks of secondary storage is kept in 

memory as a list of the 64 largest extents of contiguous free 

blocks. Blocks for files are allocated and freed from this list 

using an algorithm which minimizes file system fragmentation. 

When freeing blocks, the blocks are merged into an existing entry 

in the free list if possible, otherwise placed in an unused entry 

in the free list, or failing this, replace an entry in the free 

list which contains a smaller number of free blocks. 

The entries which are being freed or allocated are also 

added to an update list in memory. These update entries are used 

to update a bitmap which resides on secondary storage. If the 

in-core free list should become exhausted, the bitmap is consult­ 

ed to re-create the 64 largest entries of contiguous free blocks. 

The nature of the file system and the techniques used to reduce 

file system fragmentation ensure that this is a very rare oc­ 

currence. 

Very active file systems consisting of many small time­ 

sharing files may be compacted periodically by a utility program 
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to minimize file system fragmentation still further. File system 

storage fragmentation actually only becomes a problem when a file 

is unable to grow dynamically having used up all 27 extents in 

its file map entry. Normal time-sharing files do not approach 

this condition. 

Communication with the file system process is achieved en­ 

tirely by means of messages. The file manager can handle 25 dif­ 

ferent types of messages. The file manager is a kernel process 

using both I and D space. It is structured as a task manager 

which controls a number of parallel co-operating tasks operating 

on a common data base and are not individually preemptible. Each 

task acts on behalf of one incoming message and has a private 

data area as well as a common data area. The parallel nature of 

the file manager ensures efficient handling of the file system 

messages. The mode of communication, message buffers, also 

guarantees that other processes need not know the details of the 

structure of the file system. Changes in the file system struc­ 

ture are easily implemented without affecting other process 

structures. 

7. ~ ~-Sharing Supervisor 

One of the first supervisor-user processes developed for the 

MERT system was a time-sharing supervisor logically equivalent to 

the UNIX time-sharing system (7). This system has a powerful set 

of tools for software development, including an editor, an assem­ 

bler, a link editor and a compiler for a systems language, C (8). 

Many user application programs have also been written for the 
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UNIX system. Therefore the logical equivalent of a UNIX time­ 

sharing supervisor process with user programs running in user 

address space was implemented as an environment in the MERT sys­ 

tem. 

The UNIX supervisor process was implemented using messages 

to communicate with the file system manager. This makes the UNIX 

supervisor completely independent of the file system structure. 

Changes and additions can then be made to the file system process 

as well as the file system structure on secondary storage without 

affecting the operation of the UNIX supervisor. 

The structure of the system requires that there be an in­ 

dependent UNIX process for each user who "logs in". In fact a 

UNIX process is started up when a "carrier-on" transition is 

detected on a line which is capable of starting up a user. 

For efficiency purposes the code of the UNIX supervisor is 

shared among all processes running in the UNIX environment. Each 

supervisor has a private data segment for maintaining the process 

stack and hence the state of the process. For purposes of com­ 

munication one large data segment is shared among all UNIX 

processes. This data segment contains a set of shared buffers 

used for system side-buffering and a set of shared file descrip­ 

tors which define the files that are currently open. 

The sharing of this common data segment does introduce the 

problem of critical regions, i.e. regions during which common 

resources are allocated and freed. The real-time nature of the 
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system means that a process could be preempted even while running 

in a critical region. To ensure that this does not occur, it 1s 

necessary to i9hibit preemption during a critical region and then 

permit preemption again upon exiting from the critical region. 

This also guarantees that the delivery of an event at a higher 

hardware priority will not cause a critical region to be re­ 

entered. Note that a simple semaphore cannot prevent such re­ 

entry unless events are inhibited during the setting of the sema­ 

phore. 

The UNIX supervisor makes use of all of the communication 

primitives discussed previously. Messages are used to communi­ 

cate with the file system process. Events and shared memory are 

used to communicate with other UNIX processes. Communication 

with character device driver processes is by means of EMT traps. 

Files are used to share information among processes. Process 

ports are used in the implementation of an error logger process 

to collect error messages from the various I/0 device driver 

processes, as previously described. 

The structure of the basic kernel and of the file system 

make it possible to add new features to the UNIX supervisor. An 

application program has been written to create an image of a pro­ 

cess with all of the pertinent information about the process con­ 

tained in the header block of the file which contains the process 

image. A UNIX process may send a message to the process manager 

to create and load the process described in a process image file. 

This is used to start up other supervisor-user processes 
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including real-time processes. 

The structure of the file system, particularly the fact that 

large pieces of files are contiguous, facilitates the implementa­ 

tion of physical and asynchronous I/0 transfers directly between 

the user's address space and his files. The limit on the size of 

the data transfer is determined by the size of the user's data 

segment. 

The ability to send and receive messages is also available 

to the user. For communication with unrelated processes, a pro­ 

cess has the facility to connect to a port and send a message 

through it. 

A process consists of a related collection of logical seg­ 

ments. The segments which belong to a process are usually deter­ 

mined by the process manager upon creation of the process and 

subsequently by the supervisor. However under HERT a user may 

also add logical segments to his user address space. The user 

may specify the access permissions on a per segment basis as well 

as determine the access permissions for any descendent processes. 

Access to information in a shared segment is controlled by means 

of synchronization primitives between the co-operating processes. 

The entire code for the UNIX supervisor process consists of 

6000 words. All memory management and process scheduling func­ 

tions are performed by the basic kernel. 
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8. Real Time Aspects 

Several features of the MERT architecture make it a sound 

base on which to build real-time operating systems. The kernel 

provides the primitives needed to construct a system of cooperat­ 

ing, independent processes, each of which is designed to handle 

one aspect of the larger real-time problem. The processes can be 

arranged in levels of decreasing privilege depending on the 

response requirements. Kernel processes are capable of respond­ 

ing to interrupts within 100 microseconds, non-swap supervisor 

processes can respond within a few milliseconds, and swap 

processes can respond in hundreds of milliseconds. Shared seg­ 

ments can be used to pass data between the levels and to insure 

that the most up-to-date data is always available. The preemp­ 

tive priority scheduler and the control over which processes are 

swappable allow the system designer to specify the order in which 

tasks are processed. Since the file manager is an independent 

process driven by messages, all processes can communicate direct­ 

ly with it, providing a limited amount of device independence. 

The ability to store a file on a contiguous area of secondary 

storage is aimed at minimizing access time. Finally, the availa­ 

bility of a sophisticated time-sharing system in the same machine 

as the real-time operating system provides powerful tools which 

can be exploited in designing the man-machine interface to the 

real-time processes. 

9. Process Debugging 

One of the most powerful features of the system is the 
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ability to carry on system development while users are logged in. 

New I/0 drivers have been debugged and experiments with new ver­ 

sions of the time sharing supervisor have been performed without 

adversely affecting the user community. 

Three aspects of the system make this possible: 

1) Processes can be loaded dynamically. 

2) Snap shot dumps of the process can be made using the time 

sharing supervisor. 

3) Processes are gracefully removed from the system and a 

core dump produced on the occurrence of a "break point 

trap". 

As an example, we recently interfaced a PDP-11/20 to our 

system using an inter-processor OMA link. During the debugging 

of the software, the two machines would often get out of phase 

leading to a break-down in the communication channel. When this 

occurred, a dump of the process handling the PDP-11/45 end of the 

link was produced, a core image of the PDP-11/20 was transmitted 

to the PDP-11/45, and the two images were analyzed using a sym­ 

bolic debugger running under the time sharing supervisor. When 

the problem was fixed a new version of the kernel mode link pro­ 

cess was created, loaded, and tested. Turn around time in this 

mode of operation is measured in seconds or minutes. 

While it is possible for an undebugged kernel process to 

corrupt the system, our experience has been that this does not 

happen. Using higher level languages (8), and making the ap­ 

propriate checks in the kernel for the most common types of er­ 

rors has proven to be an effective way to prevent crashes. 
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10. Summary 

We summarize here some of the conclusions we have come to 

concerning the structure of the system, its overall efficiency, 

the design trade-offs made, the disadvantages of the system 

design as well as the advantages and some operational statistics. 

In general, for the sake of a more efficient system, protection 

was sacrificed where it was believed not to be crucial to an 

effective system. The very nature of the structure of the C 

language which was used to write the code for all processes, ker­ 

nel and supervisor-user, forced structure in the processes thus 

providing some means of protection. 

The hardware of the PDP-11/45 computer requires that a dis­ 

tinction be made between kernel processes and supervisor-user 

processes. Kernel processes have direct access to the kernel­ 

mode address space and may use all privileged instructions. 

Moreover, a kernel process has access to some of the sensitive 

system data used by the kernel procedures. The stack used by a 

kernel process is the same as that used by the basic kernel. The 

address sharing expedites the transmission of messages since the 

data in the message need not be copied. 

To provide complete security in the kernel would require 

that each process use its own stack area and that access to all 

base registers other than those required by the process be turned 

off. The time to set up a process would become prohibitive. 

Since kernel processes are most often dispatched to by means of 

an interrupt, the interrupt overhead would become intolerable, 
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~aking it more difficult to guarantee real-time response. 

cess. 

The message buffers are also corruptible by a kernel pro­ 

The only way to protect against corruption completely 

would be to make a kernel call to copy the message from the 

process's virtual address space to the kernel buffer pool. For 

efficiency reasons this was not done. 

In actual practice the corruption of the kernel by kernel 

processes does not occur in our system even when debugging new 

kernel processes. using the C language facilitated the writing 

of correct program procedures. We observed that even in the 

debugging stage fatal system errors were never caused by the 

modification of data outside of a process's virtual address 

range. Most errors were timing dependent, errors which would not 

have been detected even with better protection mechanisms. 

Supervisor-user processes do not have direct access to seo- 

.ue n t s of other processes, kernel or supervisor-user. Therefore 

it is possible to restrict the effect of t~ese processes on other 

processes. Of course one pays a price for this protection in the 

sense that all supervisor-user base registers must have the ap­ 

propriate access permissions set when the process is scheduled. 

Message traffic overhead is also higher now because a sendmsg 

kernel primitive must copy the message from the process's virtual 

address space to the system message buffer. Similarly a getmsg 

kernel primitive must copy the message from the kernel message 

buffer to. the 
, 

process s virtual address space. The following 
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times are indicative of the system overhead involved in sending 

and receiving messages: 

kernel supervisor 

send 150 400 usec. 

receive 150 400 usec. 

The total system design gives us a unique opportunity to 

compare system response time running under a dedicated UNIX 

time-sharing system with the response time running in a UNIX 

time-sharing environment supported by the MERT system. Applica­ 

tion programs which take advantage of the UNIX file system struc­ 

ture give better response in a dedicated UNIX time-sharing sys­ 

tem, whereas those which take advantage of the MERT file system 

structure give a better response under MERT. Compute-bound tasks 

of course respond. in the same time under both systems. It is 

only where there is substantial system interaction that the 

structure of the MERT system introduces extra system overhead 

which is not present in a dedicated UNIX system. Heavily used 

programs typically take 5 to 10 percent longer to run under MERT 

compared to dedicated UNIX at the current stage of implementa­ 

tion. we are studying the bottlenecks in MERT to reduce this 

overhead further. We believe that this overhead is a small price 

to pay to achieve a well-structured operating system which has 

capabilities for further expansion in supporting other processes 

which provide different environments. In retrospect we believe 

the structure of the system does provide a good base for doing 
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further operating system research. 
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