Bell Laboratories Cover Sheet for Technical Memorandum

—. The information contained herein is for the use of employees of Bell Laboratories and is not for publication.

(See GEI 13.9-3)

Title-

A Minicomputer Satellite Processor System + Date- March 22,

T™M- 78-3114-2
78-1359-3

Other Keywords- UNIX

Author

Operating Systems
Minicomputer Support
Microprocessors

1978

Location Extension Charging Case- 39394
H. Lycklama HO 1G-317 3212 Filing Case- 39394-11
C. Christensen MH 7C-217 4441

ABSTRACT

A software support system+ for a network of minicomputers and micro-
computers is described. A powerful time-sharing system on a central computer
controls the loading, running, debugging and dumping of programs in the satel-
lite processors. The fundamental concept involved in supporting these satellite
processors is the extension of the central processor operating system to each
satellite processor. Software interfaces permit a program in the satellite proces-
sor to behave as if it were running in the central processor. Thus, the satellite
processor has access to the central processor’s I/0 devices and file system yet
has no resident operating system. The implementation of this system was con-
siderably simplified by the fact that ail processors, central and satellite, belong
to the same family of computers (DEC PDP-11 series). We describe some

examples of how the SPS system is used in various projects at Bell Labora-
tories.

A modified version of this memorandum has been submitted for publication in the special issue of the
BSTJ on Software, July-August, 1978.

Pages Text 7
No. Figures 2

Other 3 Total 10
No. Tables 0 No. Refs. 8 HC1G317

E-1932-U (6-73)

TM-78-3114-2

LYCKIAMA A NYEHOLT,H CM

04s705/78

AUTHOR NAMED CKGANIZATION

SEE REVERSE SIDE FOR DISTRIBUTION LIST

BELL TELEPHONE LABORATORIKS,

COMPLETE MEMORANDUM 1O
CORRESPONDENCE FILES

OFFICIAL FILY COPY
PLUS CONE CORY FOk

LACH
CAUE HEFEHKENCED
DATE FILE COPY

{FORM E-13.28)

10 REFERENCE CORIES

ACKROFF,JOHN ™
+ABDIS, K 8
BALDWIN, GEORGE L
<BAROM, ROBERT V
BAUER,H C
BAYER, L L
BEAUMONT, LELAND k
BEDNAK, JJOSEPH A,JkR
dul.L,R F
BENOWINZ, b
LERGLANL,G D
BLOUSER, PATRICK A
BOYD,GARY ©
BOYLE,W S
BRAULEY,® H
BROWN, W STANLLY
CAREY, € £,Ju
CICON,d P
CLOGSTON, ALBEET ™
COHEN, CAVIE
CUTLEE, U CHARPIN
DE ANGELIS,? E
DICKMAN, ELRNARD N
DOLAN,MAKIE T
DOLL, RICHARL EMIL
DOLOTTA,T A
DEAGER, JCHN
UDWORAKR,F &
FITCH, 5 M
SEE,A G
FREFMAN,K G
FUOENY,S5TAN L
GARST, BLAINE,JH
GILLETTE,DEAN
<GIORUANO, PHILIP P
GLASSER,ALAN L
HAIGHI,R C
HAISCH,H F,JdK
HALE,JAMCS F
HALL,AKDREW D,Jk
+HANNAY N ©
HAYDEN, DONALD F,JR
AFTDRR, BRUCE 1
NHAN,C &
L, CAKRL M
ILLIUM,H C,JR
JUDLCE,C N
KAISER,J F
KANODIA, RAJENDRA K
KAN,HSIN-KUO

+ NAMED BY AUTICR
WERE SELECTED USING

RODITIUNAL FILING

> CITED AS KEF

INC.

COMPLETE MEMORANDUM TO

KEEFAUVER,W L
<KEESE,W M
ENEUER, JOSEPH G
KODRAN, ALAN &
KOGELNLK, H
KEIPALANL, ANIL T
LAWLESS, WILLIAM J
LiMB,JOBN O
LIU,HUEI-CHI RICHARD
LO,DANIEL §
LUCKY,R W
LUDERER, GOTTFRIED W K
LYCKLAMA A NYEHOLT,H
MANCUSI,M D
MARANZANG,J F
<MC DONALD,H $
MCCUGLLOCH, JOHN W
MCILROY,M DOUGLAS
METZLER, HELEN o

MOLLENAU K, JAM
MORGAN, 5AMUEL P
MOSTER, L K
NINKE,WILLIAM N
OLSON,ELIZABELL
OTT,PFTER A
PAPPAL,A L
PASTORNACK , G
PUNZIAS,A A
+PRIM,R C
RABIN,JONAS
KEDMOND, K L
RENDEK, DONALD J
RICE,DUNALD W
ROBERTS, CHARLES §
ROCHKIND,M ®
RODRIGUEZ, ERNESTC J
ROSENFELU, PETER £
SALTZBFERG,B R
SANTILLO,JAMIE ANNETTE
SCHAEFEK,J W
SCHLANGER,G GARY
<SCHONFRELD, TTUCR J
SCHWEUEL,JONN ¢
SHANNON, MARTIN J,JR
SHIRTZ, ANN L
SLICHTER,W ¢
SPIVACK,JEKRY
STURMAM,JOEL N
TAGUE,BERKLEY A
TEKEY,M E
<TEWKSRUKY,S K
<THOMPSON, I o
THOMESON, BICHARDS A
THORNTON, PLIGR P
TING,DENNIS WaY
TRIVLO, VICTOR J
TUKEY,JOLN W
TUTELMAN, DAVID M
UNGAE,DAVID M
USAS, ALAN M
WAGNER, & L

RENCE

< REQUESTED BY READER
THE AUTHCE™S SIBJECT CE CRGANLZATIONAL SPECIFICALION AS GIVEN BzLOWj

DISTRIBUTION
{REFER GEI 13.9Y-3)

COMPLETE MEMORANDUM TO

WATSON,D S
WELLER,D R
WILD,J CHRISTIAN,JR
WOLONTLS,V MICHAEL
ZELASKG,JO ANN F
LZiSLIS,PAUL M

118 NAMES

COVER SHEET ONLY TO

CORRESPONDENCE FILES

4 COPIES PLUS
COPY FCR EACH
CASE

ONE
FILING

ARGESEN, JOUN
ABATEMARCS, TERLSA M
ABATE, JOSEPR
ABBRECHT, KICHARD L
ACKZRMAN, A FRANK
AHC, ALFKED V
AHUJA, SUDHLK K
ALBEHTZ, BARBARA A
ALCALAY,D
ALEXIS,A D,Jk

ALLES,d G
ALLISON,C E,JR
AMITAY, N
AMOSS,JOHN J
ANDERSON,C R
ANDERSON, & E
ANDERSON, BOBERT V
ANDERSON,W A
ANTOLICK,DAVIL B
ANTONELLIL, PHYLLIS
ARCHER, VANCE 0, I1I
ARNOLD, GECAGE W
ARNOLD,S L
ARNOLD, 1HOMAS F
ARTHURS, E
ARTIS, H 2
ASTHANA, ABHAYA
ATKINS,JCAN
AXELSON,A L
BABECKI,GLLNN &
BADU, RAJESH wATILAL
BACCASH,JEANNS M
BACH, MAUKICE J
BACKUS,C F,Sk
BAGLEY,JCHN b
BAIN,WILLIAM LAMAK,JR

<BALDWIN, GAKY L
DALENSON, CHRYSTINE M
BALL, MARSHALL
BANKER, KIN K
BATISTONI,F J
BATTAGLIA, ¥ RANCES
BACER, ANDREW E
BAUER, BAKBANA T

COVER SHEET ONLY TO

BAUER,HBELEN A
<BAUGH,C R
BAXTER,LESLIE A
BECKER,JACOE 1
BECKETT,J T
BECEAFT,A D
BEL BRUNO,KATHLEEN A
<BENES,V E
BENISCH,JEAN
EENJAMIN,O J
BENNETT, BICHARD L
BENNETT,WILLIAM C
BERGERON,R F,JR
BERNSTEIN,DANIELLE R
<BEYEK,JEAN-DAVID
BHATIA,RAJIV
BIANCHI,M H
BIAZZO,M R
BIRCHALL,R ©
BIKEN, IKMA I
BISHOP,J DANIEL
BITTNEE, BARBARA 8
BITTHICH,MARY E
BLAZL
BLINDE
BLIRN,J C
BLISS,RUBEKT H
BLUE, JAMES L
BLUM, MARION
BOCKUS, ROBERT J
BOCK, NANCY E
BODDIE, JAMAS R
BOGART,F J
BO1ANC, ROSEMARY
BOIVIE,RICHARD H
BONACHEA,R N
BONANNI,L E
BOND, HOLTON C,Jk
BOPP.J ROBERT
BOKG, KEVIN &
BOSE, DEBASISh
EOSTON, RONALD E
EOSWORTH, & &
BOTHUK, K H
DOURNE, STEPHEN &
BOWEN,E G
EOWYER,L KAY
BOYCE,C D
BOYD, K W
BOYLE,GERALD C
BR&DFORD, EDWARD G
BRADLEY M HELEN
BRAINAKD, R ¢
BRANDAUER, U M
BRANDT, RICHAKD D
BRANTLEY, JUAN T
BREECZ,H 7T, 3RD
BEESLEK, RENDE A
BEITT,WARREN D
BRONSTEIN, N
BROSS, JEFFREY D
BROWNE, PAUL N

{NAMES WITHOUT PREFI1X

TM-T78-3%14-2
AP=T8-1359-3

COVER SHEFT ONLY TO

BROWN, C W
BRUWN, & 1,
BRCWN, ¥ AL ¥
BROWN, ROUIN T
BUCH, T It

BURNS, GARY J
RURBOFY, STEVEN J
EURRCWS, THOMAS A
BURK, DAVI JOSTPH
<BUTZIEN,PAUL %
BYORICK,ROBFRT ¢

H
AWPBLTL, MICHAEL K
CANADAY , RVTOD H
CANDELTERI, ANTHORY vV
CANDEEA, RONALD D
CANLY, 3 C
CANNON, LAYNE W
CAEBONF,J T
CARDOTA, WAYHE t
CAEFRY,J 7
CARRAN,JOHN H
CAREIGAN, FAYMONL: T
CARFR,DAVID C
CASEY,J L
CATC,H F
CELENTANC, VIRGTNIA
<CEEEATO, R

CHAFFLE, ¥ F

CHAO,C
ci (J0YCE
CHEE

CHENG- LIS PR,
CHENG, JULT AN

CHEN, 503

(ST

COBEN,

COCH

CORFN, AARON S
COHEN, HAEVEY

933 JOTAL

MEKC URY SPECIFICRTXON...-......-........-.................,.

A R T T

COMPLETE MEMO TO:

135~CpH 13-DIR 11-EXD 15~ EXT 16-EXD 135-350p 127-50P Jit-sup 10-FXD 12-vXD
13-8XL0 VI-EXD 31-EXD 823-5U¢F 312-sU0p 32-EXD 1352 3tv4 3111 3124
COVER SHEET To:
135 127 6234 "9152 312
UNOS# = UNIX OPERATING SYSTEM: GENERAL OR SURVEY DOCUMENTS .

HO CORRESPONDENCE FILES
HO 5C101

TM=-78-3114-2
TOTAL PAGES 10

O OGET A COMPLETE CcopPY: PLEASE SENL A COMPLETE

1. I83 I wiVilk unN Titk OTHE® SIDE. (} MICROFICHE CoPY {) PAPER (CPY
<. wWITH THIS SILE OUT AND STAPLE.
3. IGHT. USE NO ENVELCPE. 10 THE ADDRESS SHOWN ON THF OTHER SIDE.

Bell Laboratories

Subject: A Minicomputer Satellite Processor System+ date: March 22,1978
Case- 39394 -- File- 39394-11

from: H. Lycklama
C. Christensen

T™: 78-3114-2
78-1359-3

MEMORANDUM FOR FILE

1. Introduction

The satellite processor system (SPS) and the concept of a satellite processor have evolved
over the years at Bell Labs in order to provide software support for the ever-increasing number
of mini- and microcomputer systems being used for dedicated applications. The satellite pro-
cessor concept allows the advantages of a large computing system to be extended to many
attached mini-processors, giving each satellite processor (SP) access to the central processor’s
(CP) file system, software tools and peripherals while retaining the real-time response and flexi-
bility of a dedicated minicomputer. Since the cost of the peripherals for a minicomputer often
far exceeds the cost of its CPU and memory, the CP provides a pool of peripherals for the sup-
port of many SP’s. Although each SP requires a hardware link to a CP, the idea of a satellite
processor is basically a software concept. It allows a user program, which might normally run in
the CP using its operating system, to run in a SP with no resident operating system.

This paper describes the hardware and software required for SPS, the concepts involved in
SPS and how these concepts can be extended to provide even more powerful tools for the SP.
Several examples of the use of the SPS system in Beil Telephone Laboratory projects are
described.

2. Hardware Configuration

The particular SPS hardware configuration described here consists of a DEC PDP-11/45
central computer (1) with a number of satellite processors attached using a serial 1/0 loop (2)
as one of the communication links between the SP’s and the CP (see Figure 1). Other satellite
processors are attached using DR11C, DL11 and DHI11 devices (see below). Each SP is a
member of the DEC PDP-11 family of computers, with its own set of special 1/0 peripherals
and at least 4K 16-bit words of memory. A local control terminal is optional. The central com-
puter has 112K 16-bit words of main memory and 96 megabytes of on-line storage. Eight dial-
up lines and various other terminals are available for interaction with the UNIX time-sharing
system (3), supported by the MERT operating system (4). Magnetic tape is available as one
peripheral device for off-line storage of files. Access to line printers, punched card equipment
and hard-copy graphics devices is available through the connection to the central computing
facility for Bell Laboratories.

UNIX is a Trademark of Bell Laboratories. . .

+ A modified version of this memorandum has been submitted for
publication in the special issue of the BSTJ on Software,
July-August, 1978.

3. Communication Links

A number of satellite processor systems have been installed in various hardware
configurations using both the UNIX and the MERT operating systems. The devices supported
as communication links include the serial I/0 loop mentioned above, the DL11 asynchronous
line interface unit and the DH11 multiplexed asynchronous line interface unit. These are all
essentially character-at-a-time transfer devices. The asynchronous line units may be run up to a
baud rate of 9600. The most efficient communication link is the UNIBUS link device which is
a direct memory access device permitting a transfer rate of 100,000 words per second. How-
ever, the device limits the inter-processor distance to 150 feet. Another efficient link is the
DR11C device which permits word-at-a-time transfers. Its actual transfer rate is limited by
software to about 10,000 words per second.

The choice of communication link is based on the distance between the SP and the CP,
data transfer rate requirements and cost of the link. The I/0 loop allows a SP to be placed at
least 1000 feet from the CP and supports a data transfer rate of 3000 words per second. Thus a
SP with 16K words of memory can be loaded in 5 seconds.

4, SP Software

The satellite processor concept extends an operating system on a CP to multiple SP’s. In
an operating system such as the UNIX system, the interface or communication between a user
program and the system is by means of the system call These UNIX system calls manipulate
the CP file system and other resources managed by the operating system. In the SP concept,
the interface between a user program running in the SP and the operating system which is
being emulated by the central processor is also the system call (see Figure 2). Only here the
extension is achieved by trapping the sysiem call in the SP and passing the system call and its
arguments to the CP. A process running in the CP on behalf of the SP then executes the sys-
tem call and passes the results back to the SP. Control is then returned to the SP user pro-
gram. Each SP executes a program locally, has access to the CP’s file system and peripherals by
means of the system call and yet does not contain an operating system. This technique of parti-
tioning a program at the UNIX system call level provides a clean, well-defined communication
interface between the processors.

The local SP software required to support SPS consists of two small functional modules, a
communication package and a trap handler. The communication package transfers data
between the SP and the CP on behalf of the program running in the SP. The trap handler
catches processor traps (including system cail traps) within the SP on behaif of the SP user pro-
gram and determines whether to handle them locally or transmit the trap to the CP via the
communication package.

4.1. SP Communication Package

The satellite processor communication package resides in the SP at the top of available
memory. For those SP’s which have read-only-memory (ROM), the communication package is
typically cut in ROM at address 173000 and occupies less than 300 words of memory. Actual
size depends on the communication link used. The functional requirements of the communica-
tion package include CP-SP link communication protocol, interpreting and executing CP com-
mands, and sending trap conditions to the CP. The basic element of communication over a
CP-SP link is an 8 bit byte and messages from the CP to the SP are variable length strings of
bytes containing commands and data. The SP communication package is able to distinguish
commands from data by scanning for a special prefix byte. This prefix byte is followed by one
of five command code bytes. The following is a list of the five commands and their arguments
which can be sent from the CP to the SP.

read memory address nbytes
write memory address nbytes
transfer address

return

terminal i/o

Fach argument is two bytes (16 bits) and is sent twice, the second byte pair being the two’s
complement of the first to insure error free transmission. Also the data following the read
memory and write memory commands has a checksum associated with it to guarantee proper
transmission. If within the byte stream of data, a data byte corresponds to the command prefix,
it is followed by an escape character to avoid treatment as a command.

This communication package is sufficient to enable the user at a SP terminal to communi-
cate with the CP as a standard login terminal. When the SP communication package is started,
it comes up in terminal ifo mode, passing all characters from the local SP terminal to the CP
over the communication link. In the reverse direction all CP output is printed on the local SP
terminal. The five communication commands listed above are only invoked when a program is
down-loaded and executed in the SP. The read memory and write memory commands are used
to read and write the memory of the SP, respectively, starting at the specified address,

address and continuing for nbytes bytes. The transfer command is used to force the SP to
transfer to a specified address in the SP program, normally the beginning of the program. The
return command is used to return control back to the SP at the address saved on the SP stack.
When the CP wishes to write on or read from the local SP terminal, the SP is given the terminal
ilo command.

4.2. SP Trap Handler

The second functional module which must be loaded into the SP is the trap handler. It is
prepended to each program to be executed in the SP. This is the front-end package which must
be link-edited with the object code produced by a UNIX compiler. The trap handler catches all
SP traps and passes those that it cannot handle to the CP via the communication package. The
trap handler determines the trap type (and, in the case of system call or SYS traps, the type of
SYS trap). If the trap is an illegal instruction trap, the handler will determine if it has the capa-
bility to emulate this instruction, or whether it must be passed to the CP. If the trap is to be
passed to the CP, a five word communication area in the SP is filled with the state of the SP at
the time of the trap. The communication package causes an interrupt to occur in the CP,
thereby alerting the CP process running on behalf of the SP. The SP trap state is then read
from the communication area and upon processing this trap in the CP, the CP process passes
argument(s) back in the communication area of the SP. Control is then returned to the SP.

The trap handler also monitors the SP program counter and local SP terminal sixty times
per second using the sixty hertz clock in the satellite processor. This permits profiling of a pro-
gram running in the SP and controliing it from the local SP terminal. Upon detecting either a
rubout character (delete) or a control backslash character (quit) from the local SP terminal, a
signal is passed back to the CP, causing the SP program to abort if these signals are not handled
by the SP process. At the same time a check is made to see if there have been any delete or
quit signals from the CP process. If the SP has no local terminal, setting a -1 in the switch
register will turn control over to the CP process. If an undebugged program in the SP halts,
restarting it at location 2 will force an IOT trap to the system trap handler, which in turn causes
the memory of the SP to be dumped into a core file on the CP.

The trap handler consists of up to four separate submodules:
1. trap vectors, communication area, trap routines (400 words)
2. PDP-11/45 instruction emulation package (500 words)

3. floating point instruction emulation package (1000 words)
4. start up routine.

Of these, the first is always required. The illegal instruction emulation packages are loaded

-4-

from a library only if required. The start up routine depends on the options specified by the
user of the program to be loaded.

Estimates have been made of the execution time of the various emulation routines. The
times are approximate and assume a PDP-11/20 SP, a PDP-11/45 CP and an 1/0 loop connect-
ing them.

The running times for the PDP-11/45 instructions emulated in the SP are as follows:

Instruction PDP-11/20 | PDP-11/45
mul (multiply) 830 usec. 3.8 usec.
div (divide) 1200 7.5
ash (shift) 660 1.5
ashc (double shift) 720 1.5
xor (exclusive or) 440 .85
sob (sub. and branch) 400 .85
sxt (sign extend) 400 .85

If execution time is important in a SP program, these instructions should be avoided. In C pro-
grams these instructions are generated not only when explicit multiplies, divides and multiple
shifts are written, but also when referencing a structure in an array of structures. Using a
PDP-11/35 or PDP-11/40 with a fixed point arithmetic unit as a SP would reduce the execution
time for these instructions.

The average times to emulate floating point instructions in the SP are as follows:

Instruction | PDP-11/20 | PDP-11/45
add 2100 usec. 4 usec.
sub 2300 4

mul 3500 6

div 5600 8

For applications which require large quantities of CPU time running Fortran programs, it is pos-
sible to use a PDP-11/45 CPU with a floating point unit as a SP.

5. CP Emulation of Traps

During the time that the SP is executing a program, the associated CP process is road-
blocked waiting for a trap signal from the SP. Upon receiving one, the CP process reads the
SP trap state from the communication area, decodes the trap and emulates it, returning results
and/or errors. A check is also made to see if a signal (quit, delete, etc.) has been received.

Of the more than 40 UNIX system calls (5) emulated, about 30 are handled by simply
passing the appropriate arguments from the SP to the CP process and invoking the correspond-
ing system call in the CP. The other 10 system calls require more elaborate treatment. Their
emulation is discussed in more detail here.

To emulate the signal system call, a table of signal registers is set aside in the CP process,
one for each possible signal handied by the UNIX system. No system calli is made by the CP
process to handle this trap code. When a signal is received from the SP, this table is consulted
to determine the appropriate action to take for the CP process. The SP program may itself
catch the signals. If a signal is to cause a core dump, the entire SP memory is dumped into a
CP core file with a header block suitable for the UNIX debugger.

The sty and griy system calls are really not applicable io the SP process, but if one is exe-
cuted, it will be applied to the CP process’ control channel. The profsystem cail is emulated by
transferring the four arguments to the profile buffer in the SP memory. The SP, upon

.5.

detecting non-zero entries here during each clock tick (60 times per second), will collect statis-
tics on the SP program’s program counter. Upon completion of the SP program, this data will
be written out on the mon.out file. The sbrk system call causes the CP process to write out
zeroes in the SP memory to expand the bss area available to the program. An exit system call
changes the communication mode between the SP and the CP back to the original terminal
operation mode. It then causes the CP process to exit giving the reason for the termination of
the SP program.

The three most time-consuming system calls to emulate are read, write and exec. The exec
system call involves loading the executable file into the SP memory, zeroing out the data area
in the SP memory and setting up the arguments on the stack in the SP. A system read call
involves reading from the appropriate file and then transfering this data into the SP buffer. The
system write call is just the reverse procedure.

The fork, wait and pipe system call emulations have not been written at this time and are
trapped if executed in a SP. One possible means of emulating the fork call would be to copy an
image of the parent process in one SP into another SP, permitting the pipeing of data between
two SP’s.

6. Typical Session

Supporting a mini PDP-11 as a SP on a CP running the UNIX system combines all the
advantages of the UNIX system programming support with the real time response and
economic advantage of a stand-alone PDP-11. In a typical SP programming session, a program-
mer sitting at the local SP terminal logs into the CP and uses the UNIX editor to update a SP
program source file. It could be agsembly language or one of the higher level languages avail-
able on the UNIX system (C, LIL , FORTRAN). Assume a C source file "prog.c". When the
edit is complete the following commands are issued:

% cc -c prog.c
% ldm -me prog.o
% 111 a.out

"cc -¢" compiles the C program "prog.c” in the CP and produces the object file "prog.0”. "ldm
-me" combines the SP trap handler (-m) and instruction emulator (e) with the C object file
"prog.o”, generating an "a.out" object file. "111" loads the "a.out" file into the SP, and starts it
with the SP terminal as the standard input and output. The programmer then observes the
results of running the program or forces a core dump, and uses the UNIX debugger to examine
it. If any program changes are required the preceding steps are repeated. During this typical
SP support sequence the programmer initiates the editing, compiling, loading, running, and
debugging of a program on a mini PDP-11 without leaving its control terminal. It is the speed
and convenience of this procedure along with the availability of high level languages which
makes the Satellite Processor concept a powerful mini PDP-11 support tool.

7. Uses

Some SP’s may be disconnected from the CP when their software has been developed and
the final product is a "stand-alone" system. Other SP’s may always have a CP connection; they
supply the real-time response unavailable from the CP, combined with access to the CP’s
software base, file system, peripherals and connection to the computing community.

The following are some examples of the use of SPS in Bell Telephone Laboratories.

_—
LIL is a little implementation language for the PDP-11.

7.1. Information Processing Experiments

Our own configuration running the MERT operating system on a PDP-11/45 computer
with 112K words of memory supports a dozen or more satellite processors, including LSI-11’s,
PDP-11/10’s, PDP-11/20’s and PDP-11/40’s. The communication links used include the serial
1/0 loop, the DL11, the DHI11 and the DR11C devices. The DH11 controls 7 LSI-11 proces-
sors as satellite processors. The following are two of our SP applications.

One of the roles furnished by an LSI-11 satellite processor is to act as a support station for
LSX (LSI-UNIX) software (6) development. The LSI-11 has 20K words of memory and is
interfaced to Advanced Electronic Design floppy disk drives. A program can be run on the
LSI-11 to transfer files from the CP to floppy disk. This may be an ordinary file or a complete
file system. The LSI-11 may then be used to run LSX from the floppy. The CP is used to do
program development for LSX and the LSI-11 is used to test the LSX software in a stand-alone
environment.

One of the more interesting applications of the satellite processor system is the use of it to
support a Digital Sound Synthesizer System (DSSS). The hardware consists of an LSI-11 pro-
cessor with 24K words of memory, two floppy disks, a TV raster scan terminal and much more
special digital circuitry interfaced to the LSI-11 Q-bus to provide the control of the DSSS sys-
tem. The heart of the software consists of a multi-tasking system designed to handle about a
hundred processes (8). The basic program directs the machine’s output devices such as oscilla-
tors, filters, multipliers and a reverberation unit. The data for the program is stored and
retrieved from the floppy disk. The SPS system is used to download programs from the CP and
produce core dumps of the LSI-11 memory back at the CP for debugging purposes. The CP is
used for program development.

7.2. Radiation Physics Experiments

The Radiation Physics Research department has a PDP-11/45 computer running the
MERT operating system with a number of PDP-11 processors attached as satellite processors.
One of these is a PDP-11/10 computer with 8K words of memory and connected to the CP
with a DL11 serial line interface unit running at 19.2 Kbaud. The SP is connected to a 3.75
Mev. accelerator through an electronics bin. The accelerator is used for surface studies and ion
implantation studies. The SP is used for data acquisition in these experiments. Typical use
consists of collecting data from the accelerator and writing this data to a file on the CP. The CP
performs calculations on this data and generates a spectrum. This spectrum in turn may be
displayed on a live display device controlled by the SP. It is also useful at times to display this
spectrum and a spectrum of raw data directly from the accelerator simultaneously on the display
terminal controlied by the SP.

The second SP, another PDP-11/10, is connected to the CP by means of a DR11C device.
This SP is used to control light scattering experiments. Its local peripherals include a Tektronix
scope and CAMAC data coliection and control hardware. The program in the SP is essentially a
’stand-alone’ program which reads data from the CAMAC hardware, periodically does some
arithmetic and plots the data on the Tektronix scope. The program periodically sends data back
to the PDP-11/45 CP for off-line analysis and plotting.

7.3. Speech Processing Experiment

The Digital Terminal Lab uses a PDP-11/70 computer running the UNIX system as the
CP. Satellite processors connected to it include an LSI-11 processor as well as a PDP-11/40
and a PDP-11/20 processor. One of the more interesting uses of SPS here is the sampled
speech processing experiment. This requires a PDP-11/20 processor connected to the CP by
means of a DR11C device. The rate of data generation is 8 kHz. of 8-bit PCM. This must be
processed and collected in real time. A double-buffering scheme is used in the SP to collect the
data under interrupt control. Two buffers of 4096 bytes each are used. While data is being col-
lected in one buffer, data is being written to the host from the other buffer. It is possible to
collect data at 10,000 bytes per second using this scheme.

7.4. Materials Research Experiment

Another use of the SPS system is discussed in a previous memorandum (7). Here LSI-11
microcomputers connected to a CP by means of a DH11 device are used in a materials research
laboratory, remote from the CP, to collect data, control apparatus and machinery and analyze
the results.

8. Summary

The advantages of the SPS system are the use of higher level languages, ease of program
development and maintenance, use of debugging tools, interactive turn-around, use of a com-
mon pool of peripherals, access to files on the CP secondary storage and connection to central
computing facilities. The SP requires a minimum amount of memory since it does not contain
an operating system or other supporting software. One additional advantage is that any SP may
be located in a remote lab location.

The ability to extend an operating system to a SP may be used for purposes other than
supporting software development for the SP. A new operating system environment may be
defined by rewriting the CP process which acts on behalf of the SP program. In this way a new
set of "system calls" emulating another operating system may be extended to a SP. SP’s other
than PDP-11’s may also be supported by writing an appropriate SP communication package and
CP interface package. Cross compilers would be required on the CP to support software
development for these non-PDP-11 processors.

Another avenue of research which has not yet been explored with the SPS concept is that
of distributed computing. With a powerful SP, e.g. PDP-11/45, a compute-bound program
could run on the SP rather than on the CP itself, thereby transferring the real-time load from
the CP to the SP. The CP would only be called upon to load the program initially and to satisfy
certain file requests. The total computing power of the system would increase greatly without

duplicating the entire computer system. ,u *E
H. Lycklama
CcC
HO-3114-HL-troff C. Christensen

HO-1359-CC-troff

Attachments:
References
Figures 1-2

——

-8 -

References
DEC PDP-11 Processor Handbook, 1975.

D. R. Weller, "A Loop Communication System for 1/0 to a Small Multi-User Computer”,
Proc. of 1971 IEEE International Computer Society Conference, Sept. 1971, Boston.

K. Thompson and D.M. Ritchie, The UNIX Time-Sharing System. Comm. ACM 17,
(July 1974), p365.

H. Lycklama and D. L. Bayer, "The MERT Operating System", TM-78-3114-3.

K. Thompson and D. M. Ritchie, "UNIX Programmer’s Manual, Sixth Edition", May,
1976.

H. Lycklama, "UNIX on a Microprocessor”, TM-78-3114-1.

B. C. Wonsiewicz, A. R. Storm and J. D. Sieber, "UNIX Microcomputer Control of
Apparatus, Machinery and Experiments”, TM-77-1523-28.

D. L. Bayer, "Real-Time Software for Digital Music Synthesizer”, Proc. of the Second
International Conference of Computer Music, San Diego, October 1977.

SATELLINL ¥ f“irgfi?
il:l';: dufr\i\t (J 3 i\)bi\i“iiﬂi{

DIAL-UP

CONNECTIONS

96
MEGABYTES
OF
SECONDARY

LINK TO
COMPUTER

CENTER SATELLITE

PROCESSOR

TERMINAL

SATELLITE —\
TERMINAL PROCESSOR LSI-11
(DL11 DH11 : |
LSI-11 '
CENTRAL —
PROCESSOR LSI-11
LSI-11 BRIC) pDP-11/45 i
f CONTROLLER —
SERIAL LSI-11

1/0 LOOP

(__
[PDP-
11/10 |

PDP- |
11/20

SR PDP- | | PDP-)
11/40 11/10

] PDP- _)
110 | LSI-11

OMILLLITE TRUVLUVUN Uunivli |

NORMAL COMPUTER USER
SYSTEM PROGRAM
SYSTEM | SATELLITE
USER CALL | PROCESSOR
PROGRAM INTERFACE
CALL
OPERATING
SYSTEM <
\ 4
INTERFACE
PROGRAM CENTRAL
OPERATING PROCESSOR
SYSTEM

FIGURE 2

