
@ Bell Laboratories Cover Sheet for Technical Memorandur
The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEi 13.9-

* Title: The MERT /UNIX Supervisor

Other Keywords: Time Sharing
Real Time
Interprocess Communication
Asynchronous 1/0

II
Author(s)
H. Lycklama

Location
HO lG-317

Extension
3212

Date: April 20,1978

TM: 78-3114-4

Charging Case: 39394
Filing Case: 39394-11

ABSTRACT

A UNIX-like supervisor was implemented as an environment in the MERT system. It
provides essentially all of the capabilities available to a user program running under the
UNIX operating system but in addition offers a number of other capabilities unique to the
MERT/UNIX supervisor. These enhancements use the capabilities of the MERT kernel and
the structure of the MERT file system and include the ability to:

• create a new environment

• send and receive messages

• send and receive events

• set up shared segments

• manipulate contiguous files

• set up and communicate with process ports

• initiate physical and asynchronous I/O.

This paper describes these capabilities as well as their implementation. Some typical uses of
the MERT/UNIX facilities are discussed.

, ..

*
UNIX 1s a trademark of Bell Laboratories

Pages Text: 13

No. Figures: 0

Other: 3

No. Tables: 0

Total: 16

No. Refs.: 10

E-1932-U 0-76) SEE REVERSE SIDE FOR DISTRIBUTION LIST

@
Bell Laboratories

* subject: -::- · MERT /UNIX Supervisor
Case: 39394
File: 39394-11

date: April 20,1978

from: H. Lycklama
HO 3114
lG-317 x3212

TM: 78-3114-4

ABSTRACT

A UNIX-like supervisor was implemented as an environment in the MERT system. It
provides essentially all of the capabilities available to a user program running under the
UNIX operating system but in addition offers a number of other capabilities unique to the
MERT/UNIX supervisor. These enhancements use the capabilities of the MERT kernel and
the structure of the MERT file system and include the ability to:

• create a new environment

• send and receive messages

• send and receive events

• set up shared segments

• manipulate contiguous files

• set up and communicate with process ports

• initiate physical and asynchronous 1/0.

This paper describes these capabilities as well as their implementation. Some typical uses of
the MER T /UNIX facilities are discussed.

MEMORANDUM FOR FILE

1. Introduction

The MERT/UNIX process was the first supervisor process developed for the MERT system. The
general design and implementation details of the MERT system have been covered in previous papers
[1,2,31. The UNIX time-sharing system itself is described elsewhere [4] as well as in the UNIX
Programmer's Manu~l [5]. The MERT /UNIX supervisor is Iogically equivalent to the UNIX system in
that it implements all of the system calls of the UNIX system. A user program running under the
MER T /UNIX supervisor sees no difference from a program running under the UNIX system in a func­
tional sense.

The MERT/UNIX supervisor supports a number of additional system calls to take advantage of the
features provided by the MERT kernel and the MERT file system (see Appendix A). This

• UNIX is a Trademark of Bell Laboratories.

- 2 -

memorandum describes the implementation of the MERT/UNIX supervisor and gives a brief overview
of the new system entry points added to give the reader an appreciation of how the new features may
be used. The final section of this memorandum gives examples of how some of the features have been
used by various utility programs and some projects. References to previous publications are provided
where appropriate.

~;:?';!'
!; _'f ,~\ .-f~-,j: ~':

,,~~~~
. '· -:v. '-~ '

·: :\,\t4i:~~:
. ', __ , ·-' --~ ·--_~ ... -·

2. Cre:,t:~" New Environments

There are a number of reasons why one may wish to establish an environment different from the
UNIX time-sharing system environment under which to run. These include the ability to:

• test out a new process, either supervisor or kernel.

• establish shared memory between a kernel process and a supervisor/user process.

• run supervisor process in supervisor mode only, to maintain close control over the process and
reduce overhead.

• run new environment, e.g. DEC RSXll system.

• run kernel process.

One system call in the MERT/UNIX supervisor is provided to perform this function:

pid = pcreat("pfile", flag)

The file pfile contains an image of the process to be loaded. This file must previously have been created
by the ldp utility command [6]. The header of the file (first 512 bytes) contains information as to
which segments make up the process, the mode of the process, whether public libraries are to be
included, etc. If the created process wishes to share a segment with its parent process, the parent pro­
cess must create the segment with permissions "07'' so that it will be inherited. Only one segment can
currently be shared this way. The second argument flag indicates whether or not the process waits for a
message to start it off when first created. Pcreat sends a message to the process manager to create the
process. The process identifier of the child process is returned in pid.

3. File System Primitives

The MERT file system structure is hierarchical as it is in the UNIX system. The MERT file system
supports the same type of files as the standard UNIX file system plus a few different "MERT-type" files.
The types of files supported include directories, ordinary, special and contiguous. The contiguous file
type is unique to the MERT system. This file type is made possible by the allocation of a number of
consecutive blocks to a file. In the UNIX file system, one block is allocated to a file at a time. In the
MERT file system, blocks are allocated by extents, i.e. starting block number and number of consecu­
tive blocks. One file may have up to 27 extents. A file marked as contiguous can have only one extent
by definition. AMERT file system with more flexibility is discussed in a companion paper [71.

Two system calls are provided in the MER T /UNIX supervisor to deal with contiguous files. The
system call:

desc = falloc(fname, mode, size0, size l)

is used to create a new contiguous file fname with mode bits mode and size, in bytes, given by the 32-bit
value in sizeO and size]. Space is pre-allocated for this file and it may not be grown. Similar to the
standard UNIX system call creat, the file descriptor is returned in desc. One may now write at random
into the file. An attempt to write beyond the end of the file will fail since only one extent may be used
for this contiguous file. The file system space allocated to this file ,s only returned to the free list when
the last link to the file is removed, regardless of how much space is used. Large physical and asynchro­
nous I/O transfers may be done on this file with the assurance of good real-time response.

Occasionally, a file may use up all of its 27 extents and cannot grow any further, or a file to/from
which one needs optimum real-time response may actually consist of several extents. The system call:

fmove(dev, inode, flag)

can be used to move all of the file extents into one large contiguous extent. Although only one extent

- 3 -

is used, this file is not marked contiguous and thus may still grow in size if necessary. The arguments,
dev and inode, are obtained from a previous call to the /stat system call [51. The file is locked and can­
not be used while it is being moved. The file is moved into a contiguous area of the file system starting
at a lower block address if possible. If the value of flag is non-zero and the file cannot be moved into a
contiguous area lower than that in which it currently resides, it is moved into the first available contigu­
ous space (i.e, lowest block number available).

4. Physical and Asynchronous 1/0

The normal mode of data transfer to/from a device for all files is system buffered 1/0. In the UNIX
system, it is possible to do physical (raw) 1/0 directly to/from a program's data area only for special
files such as block device files. These mechanisms have been enhanced in the MERT/UNIX supervisor
to allow a very flexible set of 1/0 capabilities. An -additional file type, a record-type file, has also been
added to deal with record-oriented devices such as magtape in a more flexible manner.

In MERT /UNIX, three types of data transfers are available to a user program. These are referred to
as buffered, physical and asynchronous. The following table summarizes the types of data transfers
possible for each of the file types:

File Types Buffered Physical Asynchronous
Ordinary X X X

Directory X X X

Contiguous X X X

Block X X X

Record X X X

Character X - -
A system call:

setio (desc, iomode)

is provided to set the 1/0 mode of all subsequent read/write requests for the file defined by the file
descriptor desc. The 1/0 modes are:

iomode type
0 buffered
1 physical
2 asynchronous

Buffered 1/0 is the normal mode of data transfer in the UNIX/MERT system and involves the
buffering of data in the system before it is transferred to the user's address space for read operations
and after it is transferred (copied) from the user's address space for write operations. For example,

nread = read(desc, buffer, nbytes)

reads data into a system buffer and copies it to the user's address space starting at buffer up to 512 bytes
at a time until nbytes are read in. System buffered 1/0 does not require the locking of the user's data
segment during each 1/0 operation; however, it does require the copying of data from supervisor
address space to user address space. It also limits each 1/0 transfer to 512 bytes at a time, this being
the size of a system buffer.

Physical l/0 involves the transfer of data directly to/from the particular 1/0 device from/to the
user's address space. Having defined the 1/0 transfer mode for the file desc as physical, the system call:

nread = read (desc, buffer, nbytes)

transfers data directly from the physical device to the user program's data space. This data transfer
does not make use of system buffers but does require that the user's data segment be locked in
memory for the duration of the 1/0 transfer. Too many large simultaneous physical 1/0 transfers may
have an effect on total system performance for time-sharing processes. If the data transfer specified
does not start on a device block boundary, the transfer is broken up into a combination of buffered and

- 4 -

.;:fN!: ~,
//·:.,.·'.'::.·- .. <

.-:i:_i)::~:;/:i'.
... ~. ,. ·---~

physical 1/0 transfers automatically. Besides being able to selectively decide which file(s) are to be
accessed using physical 1/0, one may also decide to use physical 1/0 transfers for all of a process's open
files where possible using:

setio(-1, 1)

Reverting back to normal buffered 1/0 for all files is achieved using:

setiv,_,Q)

Asynchronous 1/0 involves the transfer of data directly to/from the particular 1/0 device from/to the
user program's address space without requiring the user program to wait for its completion. In fact, a
user program may initiate up to four I/O's to/from an arbitrary number of files before having to wait
for the completion of any of them. The system call:

bufdes = read(desc, buffer, nbytes)
initiates the 1/0 transfer returning bufdes, the buffer descriptor to be used in a subsequent check on the
status of the 1/0 transfer. The

status = statio (bufdes, statbuf, wflag)
system call is used to check on the status of a particular 1/0 transfer. Here the value of wfiag deter­
mines whether to wait for the completion of the 1/0 transfer or not. If the 1/0 transfer is complete,
the status of the 1/0 is returned in the three-word buffer descriptor statbuf All asynchronous 1/0
transfers must start on a device block boundary but need not necessarily end on a block boundary. The
system waits for the completion of all outstanding 1/0 transfers before terminating a process.

5. Messages

The use of messages for interprocess communication is at the heart of the MERT system. These
facilities have been made available to the UNIX user program by means of a number of primitives. At
present, two sets of primitives are available. The first set includes a simple send and receive capability.
The second set of primitives provides a more powerful facility with some protection and enhanced capa­
bilities. The design of the latter was done to produce a set which was compatible with the USG-UNIX
Generic 3 version of messages [8].

The first set of primitives will be discontinued at some time in the future, since its capabilities are
now covered by the second set. They are described here for completeness. To send a message to
another process, the

msgsend(msgbuf, msgsize)

primitive can be used. The maximum size message which can be sent is 112 words. The message
buffer msgbuf contains a six-word header as well as the body of the message. The sender need only fill
in the process number of the process to which the message is being sent. The message type is always
-3 for user messages. The sender must fill in the msident word in the message header so that ack­
nowledge messages may be identified. The sender must specify the size of the message in msgsize. To
receive a message, two primitives are available:

msgrecv(msgbuf, msgsize)
msgrecn(msgbuf, msgsize)

The first one receives a message up to msgsize words long into the buffer provided by the user program,
msgbuf. Only type -3 messages are received. If no messages are on the process input queue, the pro­
cess roadblocks. The second primitive, msgrecn is provided so that ·the process will not roadblock if no
messages are on the process input queue.

The second set of message primitives were designed in collaboration with the builders of USG­
UNIX Generic 3 to provide a more complete set of message facilities. A process is given the ability to
enable or disable message reception by means of the

msgenab O
msgdisabO

- 5 -

·..:.
:...~,.~\;-.'t-.:~

'·. ;~~::,._,5['!~
':',--:::k•:;• .. ,.- .. -.,,~-· _;~, ..

I \tf
4

primitives. Message reception remains enabled across exec, but not across fork. To send a message to
another process, two primitives are available:

send (buf, size, top id, type)
sendw(buf, size, tepid, type)

The only difference between the two is that the send primitive returns immediately if system message
buffers 0·~ full but the sendw primitive will cause suspension of execution until sufficient system buffer
space is available. The size of the message in the buffer buf is specified by size bytes. The destination
process is given by topid whereas the type of message is given by type. To receive a message, two prim­
itives also are available:

recv(buf, size, mstructp, type)
recvw(buf, size, mstructp, type)

Here return is immediate from recv even if no message exists on the input queue. A type of O indicates
that the first message on the input queue is to be retrieved. A type from 1 to 128 indicates that the first
message of the required type is to be received. The type of message received and the process from
which the message was received is returned in the structure pointed to by mstructp. In all cases of send
and receive, the total length of the message sent/received is returned. Further details of the message
facilities may be found in section F of the MERT Programmer's Manual [6].

6. Process Ports

Knowing the identity (process identifier) of a process gives another process the ability to communi­
cate with it. The concept of process ports was introduced in the MERT system to satisfy the require­
ments of communication between unrelated processes. A process port can be considered to be a glo­
bally known "device" to which a process may attach itself to allow other processes to communicate with
it without knowing its process identifier. By means of the system call:

pid = sysproctportnum, flag)

a process may connect itself to a port, disconnect itself from a port or obtain the identity of a process
connected to a specific port, depending on the value of flag. Having identified itself globally by con­
necting to a process port, other processes may communicate with it by sending messages to it through
the port. A system call:

msgport (msgbuf, msgsize)

is provided for this purpose. Once the communication channel is established, these cooperating
processes may now also communicate by means of the other interprocess communication facilities,
including events and shared memory. Upon the death of a process owning a port, that port is freed up.
Once a port is claimed, other processes may not re-allocate that port.

7. Shared Memory

One of the main means of interprocess communication in MERT is the use of shared memory
achieved via named segments. Each supervisor-user process consists of a number of segments both in
supervisor and user mode address space. A normal UNIX program in user space consists of a
minimum of two segments, a combined text and data segment and a stack segment. If text and data
are separated, then a total of three segments is used. If I and D space are separated, one I-space seg­
ment and two D-space segments are used. A segment is defined as a logical piece of contiguous
address space, 32 words to 32K words in size. Since the PDP-11 memory management unit breaks up
the 32K word address space into eight pieces of 4K words each, both in I-space and D-space, a user
program may have a maximum of eight segments in each address space at one time. Thus if I and D
space are not separated, a maximum of six user specified segments may be added to the user program.
If I and D space are separated, a maximum of seven user text segments and a maximum of six data
segments may be added. The text segments are typically used for public libraries (see later section).
The data segments which may be manipulated by the user program are described here.

A user program may add six data segments to his address space at one time in addition to the text,
data and stack segments, provided the total data address space does not exceed 32K words. The user

- 6 -

program may manipulate more than six segments but it can only have six in its active address space
simultaneously. Six function calls are provided to control access to these segments. They all require a
common five-word structure which defines the segment characteristics:

struct segstruct {
int segname [2];
char perm;
char breg;
int segsize;
char "segaddr;

};

I
.. , c.'.- • .</:

-~~!~

I
':."<·J~·>::X<;~
~·,:';}:>;~

---Xfs

The segment name segname is a 32-bit quantity and must be specified when a segment is being referred
to. Segments are normally managed by maintaining a table of the above structures, one for each seg­
ment. If the name of a segment is not known, the segment descriptor, segd may be used to identify it.
This segment descriptor refers to an entry in the process PCB table of user segments, a value of zero
being the first entry. Thus if the segment name segname passed as an argument to the system call is
less than 256, it is taken to be a segment descriptor, segd .

The makeseg primitive is used to create a new segment. The name of the segment must be zero
since the segment does not exist. The user may specify the base register breg in which he wishes the
segment to start or he may let the system choose the next available base register. The size of the seg­
ment segsize must be given in bytes. One may determine the access permissions for the segment for
both the parent process and for any children which are subsequently spawned. The starting virtual
address is returned in segaddr. The segment is inherited across fork's as well as across exec's. Getseg is
used to get an already existing and named segment into the user's address space. The name of this seg­
ment may have been passed by an interprocess message. Rmovseg is used to delete a segment from the
user's address space. Connseg is used to put a segment in the process' PCB into the user's address
space. A segment may be temporarily disconnected by means of the discseg primitive. In the case of
segments put in the process' virtual address space before it was invoked, one may obtain the name of
the segment by means of the getsnam primitive. This is typically used for public library segments.

8. Event Mechanism

Events have been implemented in the MER T system to achieve the communication of a small
amount of information between processes. Up to 16 different events may be sent and received by
processes. However only 8 of these are available to user programs (bits O to 7 of the event word
represent the 8 events). These events are typically used to synchronize the execution of co-operating
processes sharing a common data segment. Events differ from the UNIX "signals" in that signals are
caught asynchronously, i.e. the process execution is interrupted to cause a transfer of program control
to the user designated routine to process the signal. In the case of events, no asynchronous activity is
apparent to the user program. The primitive

sendev(process, event)

is used to send the event pattern in event to the process process. The receiving process uses the primi­
tive

event = waitevO
to determine which event(s) are received. lt roadblocks until one or more events are received. The
event mechanism described here is sufficient to deal with situations requiring completely synchronous
communication.

9. Call Mechanism

The normal mechanism used in UNIX to bring another process into execution is to spawn a process
by making a copy of the parent process using the

chid = fork 0
primitive. This primitive has two returns. The parent process returns with the process ID of the child

----------------------------~------~--~~-

- 7 -

I
'~

process chid. The child process returns with chid equal to zero. The child process will then typically
overlay itself with the image of the new program by means of the

execl(name, arg l , arg2, ... , argn, 0)

primitive or the

execv (name, argv)

primitive. Here name is the pathname of the program to be executed and argl to argn are the argu­
ments to be passed to the program. For a variable list of arguments, it is usually more convenient to
pass a null terminated list of arguments. The parent process typically invokes a

chid = wait(&status)
primitive to wait for the death of the child process. Both the child process identifier chid and the status
of the process status are returned.

It is sometimes desirable to be able to execute a new program without making a copy of the parent
process since the copy is not used typically except to perform the execute function. It is much more
efficient then, to combine the fork and wait in the parent process and do the equivalent of exec in the
child process. The call primitive spawns a child process without making a copy of the user segments. It
sets up the user address space with the named file and then transfers to the beginning of the core image
of the file. Files remain open across the call primitive. Ignored signals remain ignored across call, but
signals that are caught are reset to their default values. Any user segments which are created by the
parent process remain set up across the call primitive.

There are two means of invoking the call mechanism:

lcall(name, argl, arg2, ... , argn, 0)

and

vcall(name, argv)

The status of the child process is returned in status by issuing a

wait(&status)

primitive in the parent process. All other arguments have the same meaning as for the exec! and execv
primitives. The /call primitive is useful when a known file with known arguments is being called. The
veal/ version is useful when the number of arguments is unknown in advance.

10. Process Locking

A supervisor or supervisor-user process can be guaranteed response of the order of a few milli­
seconds only if it is in core at the time which an event arrives for it. Normally user processes are
swapped out to secondary storage if not active for some time. To guarantee real-time response to a
user process it must be locked in memory using the

plock (flag)

primitive. This marks all user and supervisor segments for this process non-swap for a non-zero value
of flag. The process may be unlocked with a zero value of flag. To guarantee good response, a process
should also run at a high software priority.

11. Semaphores

The semaphores provided in the MERT/UNIX supervisor are identical to those provided by the
USG-UNIX Generic 3 system (8). Semaphores are useful for the ynchronization of processes and for
the control of access to resources. For historical reasons, two versions of semaphores are provided for
these purposes. One is the lock-unlock type; the other is the P-V or counting type. A semaphore must
be allocated by a process before it can be used. The semaphore's access permission and type are esta­
blished by the first process to allocate it and remains in effect until freed by every process that has it
allocated. Allocated semaphores are inherited across fork but not across exec.

- 8 -

.;~
. ,,

,.,·;[/·:~:
~- •",:..-.;.:~ ... --··

Semaphores are allocated and freed by means of

number = allocsem (number, type)

and

freesem(number).

Here a ""'"'ltive number implies that an available semaphore from the system pool is chosen and allo­
cated. When allocating a semaphore, the type specifies the function for which it is to be used and what
class of processes are eligible to use the semaphore. A value of 0, 1 or 2 allocates a lock-unlock sema­
phore with an access class of anyone, same userid only, and same groupid, respectively. A value of 3,
4 or 5 allocates a P-V semaphore for use by anyone, same userid only, and same groupid, respectively .

Lock-unlock semaphores are manipulated using the following primitives:

lock(number)
unlock (number)
tlock(number).

Lock locks the semaphore specified by number. If the semaphore is already locked, the process
suspends execution until it is unlocked. Unlock unlocks the semaphore and wakes up any process wait­
ing for it to be unlocked. Tlock locks the semaphore if it is not already locked but returns immediately
if already locked.

P- V semaphores are manipulated using the following primitives:

p(number)
v(number)
test(number).

The P operation decrements the semaphore value by one if positive but suspends execution if zero,
waiting to become positive. The V operation increments the semaphore value by one and wakes up any
process waiting for the value to become positive. The conditional P operation is achieved by the test
primitive. Execution of the process is not suspended even though the value was already zero.

The mechanisms described here are rather general in that they are meant to satisfy a large class of
users. Thus the amount of code required for implementation is quite large.

12. Public Libraries

User programs often share a number of library routines. If the size of these routines is significant
and there are many user programs sharing the same routines, multiple copies will exist in memory. To
avoid this, public libraries were implemented in the user program environment. This saves a significant
amount of physical memory in cases where a number of programs need to share a large set of routines
as in the case of a centralized data base manager. Data as well as text may be shared either in one seg­
ment or separate segments. When libraries are formed using the ldp[6l command, the starting base
registers must be specified. The output is placed in a type '0401' file which uses a header block of 512
bytes to specify the segments which are included. The final user program, also of type '0401' may
include up to three public libraries. The segments which make up the 'a.out' file including those of the
public libraries must not overlap in virtual address space.

A common problem associated with public libraries is that when it is reformed, i.e. old subroutines
modified or new subroutines added, all programs which referenced it had to be link-edited again to
make the appropriate .connection to the subroutine entry points in the public library. The implementa­
tion of public libraries in the MERT system makes use of transfer vectors at the beginning of the public
library through which subroutine transfers are affected. Version numbers are associated with public
libraries. The version number is only changed if entry points are removed from the library. Only if the
version number is changed is the link-edit of all user programs using the library required.

The following sequence of commands demonstrates how a sample program which includes two pub­
lic libraries may be formed. The total shell script is given by:

-----------------------------------~-------

- 9 -

cc -c -0 ltst.c publibl.c publib2.c
sh liblsh
sh lib2sh
ldp ltst.b

The two public libraries are formed by the scripts in libl sh:

Id _r •· "ublibl.o -le -I
ldp publibl.b

and lib2sh:

Id -r -x publib2.o publibl
ldp publib2.b

The final user program is formed using the following specification file ltst. b:
mode:
ifile:
publib:

ofile:
stack:

ud
/lib/crt0.o ltst.o
{
I src/ mert/ publib/publib 1
/src/mert/publib/publib2

ltst
02400

The user may now invoke the ltst command from the shell level as any user level command. The
MERT/UNIX supervisor is able to execute the file ltst loading the libraries only if they are not already
in memory.

13. Implementation

The MER T /UNIX supervisor is part of each user program which runs in user mode as a "UNIX"
program. Each "UNIX" process is really a supervisor/user process. The supervisor code and some data
(common buffers and open file pointers) are shared amongst all UNIX-user processes. In supervisor­
mode, each process consists of at least the following four segments:

Process Control Block (PCB)
supervisor shared code
supervisor shared data
stack segment

read only
read only
read/write
read/write

The PCB contains all of the state information of the process. The contents of the PCB are described in
further detail in section A of the MERT Programmer's Manual [6].

The supervisor code segment contains all of the routines necessary to implement the functionality of
the UNIX time-sharing system. The supervisor serves the purpose of catching all traps from the user,
including the system calls, and translating these into MERT system requests. It also maintains state
tables for outstanding 1/0 requests and the status of all open files. Almost half of the system calls of
the standard UNIX system are concerned with file system requests. Each one of these requires the
building of an interprocess message to send to the file manager process. As a simple example, the
"chdir " system call results in a message being built with the current directory of the user process, the
new owner of the file and the name of the file as data in the message. The file manager process vali­
dates the request, gets the inode of the given file and checks the permissions of the requesting process
against those of the file to determine if the owner of the file can be changed. The file manager process
then sends an acknowledgement message back to the UNIX supervisor with a success/fail indication.
In the case of a read file system call, the supervisor first checks to see if the requested data is in an in­
core buffer. If it is, no request is sent to the file manager. Other system calls such as the "sbrk" sys­
tem call can be handled completely in the supervisor by making MER T system service calls to the ker­
nel.

The supervisor data segment is a shared segment among all UNIX processes. It contains all of the
file block buffers (512 bytes each) to enable the sharing of files between processes. All open files are

- 10 -

:·-_._,,_._

-0:_.-.
\}:o;'

,.

maintained here to keep offset pointers into files and an open file count. If two processes are reading
the same file, each will get different parts of the file since the offset pointer into the file is updated with
each read. All read-only data used by each process is maintained in the shared data segment as well.

The supervisor stack segment is 1024 bytes in size and corresponds to the UNIX system user block.
It contains process specific information such as open files, current directory, and other state informa­
tion. The upper part of the block is used for a downward growing stack.

Pipes in the MERT /UNIX supervisor are implemented using shared segments. When a pipe is
created, a 1024 byte segment is created and put in supervisor address space. The segment has a three­
word header to maintain a read pointer into the segment, a byte count of number of bytes in the pipe, a
count of the number of outstanding opens and a lock byte to synchronize the readers and writers on the
pipe. The remainder of the segment is used as a circular buff er to hold data written on the pipe. When
the process which created the pipe forks, the pipe segment count is incremented to indicate that two
processes now share this segment. A process may have up to eight pipe segments. However only one
pipe segment may be in supervisor address space at one time.

The implementation of most system calls is straightforward. One exception is the handling of sig­
nals. Signals may be caught in the user program and in this respect the signal system call is handled by
setting a vector in the user block segment. The sending of signals is handled by sending an interpro­
cess message to the receiving process with the signal in the body of the message. The event handler
receives the message asynchronously and the signal handling routine processes the signal in the same
manner as in the standard UNIX time-sharing system.

The "exec" system call in the MERT/UNIX supervisor has some additional capability over that pro­
vided by the standard UNIX time-sharing system. It recognizes type '0401' files as being executable
files with public libraries included. Up to three public libraries may be included in this file. The text,
data and stack segments are loaded as normally done and the library segments are loaded as needed if
they are not already in memory. Each library has a version number associated with it to guarantee
compatibility between the main user program and library routines. The nature of the MERT file sys­
tems permits the segments to be read with one 1/0 operation each.

The user program itself consists of a number of segments. The user has a great deal of flexibility as
to how to manage his virtual address space. Typical UNIX user programs have one segment for code
and data (type '0407') and one segment for the stack. The code and data start at the lowest address
and expand upward. The stack starts at the highest address and expands downward. For a large pro­
gram, shared by many users, the text segment may be shared (type '0410'). This gives the user pro­
gram three segments. If the program becomes very large, then the user may wish to use separated I
and D space (type '0411 ') so that 128K bytes of address space are available to the user. For greater
flexibility, the user must use the ldp [6] command to create a type '0401' process image in a file. The
options provided with the ldp command are quite extensive. For instance, the user may combine the
code, data and stack portions of the program into one segment and also specify the starting virtual
address of this segment Gt need not be 0).

14. Uses

The following are some examples of the uses of the MERT system features by user level programs.

14.1 Testing New Processes

The MERT system offers a convenient environment for testing out new kernel-mode as well as
supervisor-mode processes. To start up a new process from the UNIX system command level, one may
invoke:

run [-b] (-fl pfile
The optional flag -b determines whether the process whose image is in the file pfile runs asynchronously
or not, i.e. whether the parent process waits for the death of its child process or not. The -fflag deter­
mines whether the process manager sends a message to the child process to get it started or not.

To test out a new character device driver, one must form the process image in /prc/cdx where x
corresponds to the major device number. To load the process into memory, one need only invoke the

- 11 -

. ::frt<~·-·'i: :.~,;
.,-----,.;._ .. :,-.

--.f .. ·_
·-"'.":•

,.

run -b /prc/cdx

command. One may now login on the teletype device corresponding to the process just loaded. A core
dump will be produced in lcdmplcdx if a breakpoint trap is executed in the process. This may now be
debugged using the modified adb debugger.

Another frequent use of the process testing feature of the MERT system is for debugging a new
version of the UNIX/MERT supervisor. This is required to test out new or modified system calls. A
convenient test can be performed using the

run unix

command, where the file unix contains an image of the new UNIX supervisor process. This results in
another login process being started up. After logging in to the new supervisor, one may test out the
new system calls. When testing is complete, hitting the CNTRL D key on the terminal will exit the
user back to the previous UNIX supervisor. A new UNIX supervisor may be installed by means of the
following command sequence:

mv /prc/unix /prc/ounix;mv unix /prc/unix.sync

The old version of the UNIX supervisor is saved in case of problems with the new supervisor. Note
that the old and new supervisors do not share buffers or file descriptors. This may result in some unex­
pected side effects.

14.2 File System Primitives

The file system primitives added to the MER T /UNIX supervisor are directly accessible from the
UNIX shell command level by invoking two primitives with the same names. Thus

falloc fname nblocks

allocates nblocks 512 byte blocks to the file fname. The resulting file is contiguous with an initial size of
0 bytes. The blocks are pre-allocated and the file may not be expanded.

The

fmove - fname L.. fnamen]
command moves the named file [s] into contiguous secondary storage areas. The files are not marked
contiguous and thus may grow dynamically. This is a useful command to guarantee the allocation of
consecutive blocks to a file for large data transfers using physical or asynchronous l/0 with minimum
latency and transfer time. The '-' argument is passed along as a flag to the fmove system call to ensure
that the file is moved even if contiguous space does not exist below (lower block number) where the
file currently resides. ·

14.3 Physical 1/0

Two general purpose commands have been provided at the UNIX shell level to make use of physical
1/0 transfers. One may precede a command with a physical I/0 command, much the same as one
would do with the time command to time a command. Thus:

pio cc file.c

compiles the file file.c using physical I/0 wherever possible rather than buffering all data in the system
first. This typically reduces the system time for a command and thus the overall execution time. A
second command:

pep file 1 file2

can be used to copy fitel to jile2 with the same effect as the cp command. However, pep uses physical
1/0 with a 5120 byte internal buffer. This is an efficient means of copying a complete file system from
one logical file system to another.

14.4 Asynchronous l/0

Early versions of the MERT /UNIX supervisor did not provide read-ahead for files. This did not
appreciably affect programs using disk 1/0. However the lack of read-ahead was evident in the 'tp'

- 12 -

I
~;~
,;· . ..;,>'t:-:C~i'::0:;

. .., .. , .. ,

program, especially when dealing with DECtape. Thus asynchronous 1/0 was added to the 'tp' com­
mand at the user level to achieve the effect of read-ahead.

Another frequent use of asynchronous 1/0 is to provide double buffering at the user program level
when there is a requirement to collect data at a rate where delays between synchronous reads would
result in the loss of data. In these applications, the typical procedure is to use two buffers for reading
and one for writing to a contiguous file. Thus there are always two outstanding reads. As soon as one
read completes, an asynchronous write is initiated and another asynchronous read is initiated. Here the
rate of data collection is limited only by the disk latency and transfer rate. The larger the buffers used,
the less important the disk latency is.

14.5 Error Logging

When 1/0 errors occur in the system, it is helpful to be able to record the time and date of these
errors as well as the contents of the device registers. This aids in tracking down hardware faults and
hence minimizing the time to repair or even avoiding fatal 1/0 errors by repairing the device before­
hand. The errors caused by all device drivers in the MERT system are recorded by a user program
which connects itself to a known port (port number 0) and collects all error messages from the device
driver processes. Each message contains the contents of all of the device registers as well as the
number of retries necessary for a successful 1/0 operation. All relevant information concerning the
error is written into a file /etclerr/og in ascii format. This file may be examined periodically for the
occurrence of new errors.

14.6 Scratch Pad Data Transfer

The use of pipes in the MERT system involves the copy of data from user to supervisor address
space in the writer program and from supervisor address space to user address space in the reader pro­
gram. It is much more efficient to use a common data segment between the two communicating
processes. This technique has been used by the DIR/ECT project [9] to achieve efficient interprocess
data transfers. The interprocess event mechanism is used to provide the required synchronization
between the writing and reading processes. The writing process writes data directly into the shared seg­
ment starting at an address maintained in a 20 byte header at the beginning of the shared segment. A
read pointer is also maintained to point to the data which may be read by the reading process. Upon
reading, the reader is passed an address pointer to the start of data. Thus there is actually no copying
of data involved. Timing measurements indicate that this technique requires a factor of 4 or 5 less run­
ning time than by using pipes.

14.7 The Extended Shell

The basic shell as written by S. R. Bourne has been modified by N. J. Kolettis [10] to support an
expanded set of builtin functions consisting of the indigenous set and a special set of implanted ones.
Builtin functions were added to the shell to provide better execution efficiency of certain shell pro­
cedures by eliminating the forking and executing of processes. The special set includes a shell interface
to the interprocess communication facilities of the MERT system, e.g. shared segments, ports, mes­
sages, events and semaphores. This makes all of the unique features of the MERT system available at
the user's fingertips. The resulting shell, called the Extended Shell, is a real-time interpreter that can be
used to run shell procedures in real-time environments performing essentially as fast as C programs.
This shell has been used in a Bell System project which required fast response for its users. It gives the
user real-time capabilities in a language (extended shell language) that is easy to learn and use. As an
example,

conport $portno

connects the current process to the port specified by She number portno. Another process may then
send a message to the process connected to this port.

Acknowledgements

The MERT/UNIX supervisor was written during the initial design and implementation of the MERT
system in collaboration with D. L. Bayer. The current version of the MERT/UNIX supervisor has
benefited substantially from the efforts of T. M. Raleigh who has updated the supervisor by making it
more compatible with the current versions of the supported UNIX systems, making it more portable as

- 13 -

well.

H0-3114-HL-hl H. Lycklama

~~;

',~~~

I

- 14 -

·--

1

References

[ll Lycklama, H. and Bayer, D. L., A Structured Operating System for a PDP-11/45, TM-75-1352-4.

[2] Bayer, D. L. and Lycklama, H., MERT - A Multi-Environment Real-Time Operating System,
TM-75-1352- 7.

[3] Lycklama, H. and Bayer, D. L., The MERT Operating System, TM-78-3114-3.

[4] Thompson, K and Ritchie, D. M., The UNIX Time-Sharing System, Comm. ACM 17, (July
1974), p365.

[5] Thompson, K. and Ritchie, D. M., The UNIX Programmer's Manual, May 1976.

[6] Lycklarna, H. and Bayer, D. L., The MERT Programmer's Manual, October 1977.

[7] Lycklama, H., File System Structures for Real-Time Applications, TM-78-3114-5.

[8] Brandt, R. B., Implementation of Semaphores and Messages in UNIX, MF-76-8234-076.

[9] Laur, J. E., Scratch Pad Data Transfer in the MERT System, private communication.

[IO] Kolettis, N. J., Extended Shell - A Potential Real Time Interpreter, TM-77-4145-01.

. ~. -:".'::.';;'.: .• ;.,~- .
. :.:(~,;-:~.;.\;;

/~~:t¥
__ ~j- t''.~·.:'.:;.1;:it

.- ~-,~~j:~~,} ~'.;

I
:-,:--.\~:~; ,}.:.;
~-:;/.:;;.·;::- .. ~

- 15 -

Appendix A

I*
* This table is the switch used to transfer
* to the appropriate routine for processing a system call.
* Each row contains the number of arguments expected
* and a pointer to the routine.
*/

·I·.····
···, . ..,;

int sysentll
{

0, &nullsys, I* 0 = indir */
0, &rexit, /* 1 =exit*/
0, &fork, I* 2 =fork*/
2, &read, I* 3 =read*/
2, &write, /* 4 =write*/
2, &open, I* 5 =open*/
0, &close, I* 6 =close*/
0, &wait, I* 7 =wait*/
2, &creat, I* 8 = creat * /
2, &link, /* 9 =link*/
1, &unlink, /* 10 = unlink * /
2, &exec, /* 11 =exec*/
1, &chdir, /* 12 =chdir */
0, >ime, /* 13 = time * /
3, &mknod, /* 14 = mknod */
2, &chmod, /* 15 =chmod */
2, &chown, /* 16 = chown * I
1, &sbreak, /* 1 7 = break * /
2, &stat, /* 18 =stat*/
2, &seek, /* 19 = seek * /
0, &getpid, I* 20 = get process ID * /
3, &smount, /* 21 =mount*/
1, &sumount, I* 22 = umount * I
0, &setuid, I* 23 = setuid * I
0, &getuid, I* 24 = getuid * I
0, &stime, I* 25 = stime */
3, &ptrace, I* 26 = ptrace * /
0, &alarm, I* 27 =alarm*/
1, &fstat, /* 28 = fstat * /
0, &pause, /* 29 =pause*/
1, &nullsys, I* 30 = smdate; inoperative * /
1, &stty, /* 31 = stty */
1, >ty, I* 32 = gtty * I
2, &saccess, /* 33 = access * I
0, &nice, I* 34 = nice * /
0, &nullsys, /* 35 =sleep; inopera_hve */
0, &sync, I* 36 = sync * / ·
1, &kill, I* 3 7 = kill * /
0, &getswit, /* 38 = switch * I
0, &nosys, /* 39 = X */
0, &tell, /* 40 = tell * /
0, &dup, /* 41 =dup */
0, &pipe, /* 42 = pipe * /
1, ×, /* 43 = times * I
4, &profil, /* 44 =prof*/

----------------------------------- ----- --

- 16 -

0, &nosys,
0, &setgid,
0, &getgid,
2, &ssig,
4, &messag,
0, &nosys,
0, &nosys,
0, &nosys,
0, &nosys,
0, &nosys,
0, &nosys,
0, &nosys,
1, &pwbsys,
2, &scall,
0, &nosys,
0, &nosys,
0, &nosys,
2, &!flags,
0, &nosys,
0, &nosys,
2, &pcreat,
2, &msgrecv,
1, &msgsend,
1, &sproc,
1, &msgport,
2, &scall,
1, &userseg,
0, &nosys,
1, &sendevent,
0, &waitevent,
1, &setio,
2, &statio,
4, &flalloc,
3, &fmove,
0, &proclock,
0, &qwait,
1, &qsleep,
0, &nosys,
0, &nosys,
0, &nosys,

};
/*

* Dummy entry for illegal system calls
*/

/* 45 =tiu */
/* 46 = setgid * I
/* 47 = getgid */
/* 48 = sig */
/* 49 = message * I
I* 50 no system call * /
/* 51 no system call * /
/* 52 no system call * /
/* 53 no system call * /
/* 54 no system call * /
/* 5 5 no system call * /
I* 56 no system call * /
/* 57 pwbsys - udata * /
/* 58 = call, vcall * /
/* xx no system call * /
/* xx no system call * /
/* xx no system call * /
/* 62 =locks*/
/* 63 = no system call * /
/* 64 no system call * /
I* 65 = create new process * I
/* 66 = receive message * /
/* 67 = send message * /
/* 68 = system process * /
I* 69 = send message thru a port * /
/* 70 = call routine * /
/* 71 = user segment * /
/* 72 * I
/* 73 = send event(s) to user*/
/* 74 = wait for event for user * /
/* 75 =set 1/0 mode*/
/* 76 =get 1/0 status*/
/* 77 = allocate contiguous space for a file * /
/* 78 = lock and move file * /
/* 79 = process lock * I
/* 80 wait and return if no child * /
/* 81 qsleep system call * /
/* 82 no system call * /
/* 83 no system call * /
/* 84 no system call * /

int badent l]
0, &nosys

};

