
A DEMAND PAGED UNIX SYSTEM FOR

THE HARRIS /6 MINICOMPUTER

by

WILLIAM ARTHUR SHANNON

Submitted in partial fulfillment of th e requir ements

for the Degree of Master of Science

Thesis Advisor: Charles W. Rose

Department of Computer Engineering and Science

CASE WESTERN RESERVE UNIVERSITY

January 7, 1981

CASE WESTERN RESERVE UNIVERSITY

GRADUATE STUDIES

We hereby approve the thesis of

candidate for the __ t1~~. ~S~/~ __________ ___

degree.

Signed:
(Chairman)

~

Date 7-1J'-FO

..... -

A DEMAND PAGED UNIX SYSTEM FOR
THE HARRIS /6 MINICOMPUTER

Abstract

by

WILLIAM ARTHUR SHANNON

The UNIX* operating system was ported from the DEC
PDP-II minicomputer to the Harris /6 minicomputer. The
/6 is vastly different from the PDP-II, being word ad­
dressible with 24 bit words. The problems encountered
while porting UNIX to the /6 are discussed along with
implemented solutions and suggestions to simplify fu­
ture porting efforts. In addition, UNIX was extended
to support full demand paging using the /6 virtual
memory hardware. The implementation of the resulting
virtual memory UNIX system, called UNIX/24V, is
described.

* UNIX is a trademark of Bell Laboratories

- ii -

To my wife, Karen, for her encouragement and support.

- iii -

I would
mented the
this project
instrumental
and provided

ACKNOWLEDGEMENTS

like to thank Samuel Leffler, who imple­
C compiler for the /6. Without his work
would not have been possible. He was also

in debugging early versions of the system
valuable feedback on design decisions.

The efforts of Robert Gingell are greatly appreci­
ated. He provided or helped find explanations for many
of the /6 hardware problems and anomalies. In addi­
tion, his porting of the Version 7 Shell helped make
UNIX/24V a real, usable UNIX system. He was also
responsible for initiating this project within ARJCC.

I would like to thank my advisor, Professor
Charles Rose, for his help in preparing this document,
and Professors George Ernst and Raymond Hookway for
serving on my committee.

Finally, I would like to thank the A. R. Jennings
Computing Center for sponsoring this project and for
providing manpower and equipment.

- iv -

TABLE OF CONTENTS

LIST OF FIGURES . ..•.................•.. Vl l

CHAPTER I
1.l.
1. 2.
1. 3.
1. 4.

CHAPTER II
2.l.
2. 2.
2.3.
2.4.
2.4.1.
2.4.2.
2. 5.
2. 6.
2.6.1.
2.6.2.
2.6.3.
2.6.4.
2.6.5.

CHAPTER III
3. l.
3. 2.
3. 3.
3.4.

CHAPTER IV
4. 1.
4. 2.
4.2.l.
4.2.2.
4.2.3.
4.2.4.
4.2.5.
4.3.
4. 4.
4. 5.
4.6.
4.7.
4.7.1.
4.7.2.
4.7.3.
4 . 7 . 4 .
4.7.5.

INTRODUCTION ..•.......•............ 1
Background and Mot i v at io n l
UN! X •••.•.......••.••....•.•.••••..•.• 2
Hardware Configurat i on 4
Syn 0 ps is 4

THE /6 ARCHITECTURE 6
Overv iew 6
Register Set 6
Instruction Se t and ~ddressing•.. 7
I/O System 11

Channels and Units 11
I/O Instructions•..... 12

Priority Interrupt Sy st em 14
Virtual Memory Syst em 19

Modes of Operation•.. 19
Virtual Memory Sy s t em Re gisters ..•.. 20
Basic Address Tr anslation 21
Virtual Memory Viol a t i ons ..•........ 23
Virtual Memory In st ructions ...•..... 25

THE UNIX VI RTUAL MAC HINE ..•... 27
Processes 27
Memory Management ...•................. 29
Mapping 32
I/O. 33

THE /6 UNIX SySTEM•. 34
Th e Po r t 34
Da t a Struc tures•.......• 39

Dis k Blocks 40
Inodes 42
The Super-Block ..•............•. .•.. 44
Director ies 45
Other Data Structures .•.......•. 46

Kernel Mode •...•••.•..•.••...•.•• ..•.. 47
5y stem Ca 11 s•.....•. ...• 50

· 5ignals 53
VAR Allocation ...•.•.•..•...•..... 55
I/O and Interrupts•...• ... 58

I/O Instruction Primitives• ••. 58
Priority Levels •.•............... •.. 60
Clock Interrupt Handler 63
Device Interrupts•...•.....• •. 65
Processor Traps•.... ... 66

- v -

4.7.6. Device Drivers 6B
4.B. System Initialization 70
4.9. Swapping 72
4.10. General Portability Comments ...•...... 75
4.11. Features Not Supported•........•• 77
4.11.1. Accounting 77
4.11.2. Lock and Phys System Calls ...•••..•. 7B
4.11.3. Process Profiling •.................. 7B
4.11.4. Process Tracing•....•.... 79
4 • 11 . 5 . Ra w I/O........................... .. 79
4.11.6. Other 80
4.12. Summary 80

CHAPTER V
5.l.
5.2.
5.2.l.
5.2.2.
5.2.3.
5.3.
5.4.
5.5.

CHAPTER VI
6.l.
6.2.
6.3.

REFERENCES

APPENDIX A

APPENDIX B

PAGING•. 82
Over vie w. 8 2
Virtual Memory 84

Page Tables 84
Copy on Write ...•.....•............. B8
Shared Text 89

Physical Memory•.................. 91
Balance Set 94
Wor king Set 97

CONCLUSIONS AND FURTHER WORK 101
Conclusions 101
Current Limitations ...•.............•. 104
Further Wor k 105

. 108

SYSTEM INSTALLATION•... 110

CONSOLE TERMINAL MODIFICATION• 114

- vi -

LIST OF TABLES AND FIGURES

2.1 Instruction and Addressing Formats .. 9
2.2 Interrupt Addresses•............ 16
2.3 Interrupt Registers•• 18
2.4 Basic Address Translation•.... 22
4.1 Kernel Logical Address Space 71
5.1 Paging Data Structures 83
5.2 Data Structure Declarations 85
5.3 Page Table Examples•.... 87
5.4 Copy-on-write .•..................... 90

- vii -

CHAPTER I

INTRODUCTION

1.1. _ aackground and Motivation

In April, 1976, the A. R. Jennings Computing

Center of Case western Reserve University purchased six

Harris /6 computers. These compute rs were to be joined

together by a DECnet-like network[21], to be developed

and built jointly by Harris Computing Systems Division

and Case western Reserve University. The n e twork was

called CWRUnet and was to support both Harris and non-

Harris computers.

Harris spent 3 years modifying vulcan to add the

facilities necessary for networking. CWRU spent the

same 3 years modifying Vulcan to make it usable as a

general timesharing system. After this amount of work,

it became clear to CWRU that a major rewrite o f Vulcan

would be necessary before it could achieve t he hoped

for functionality in a network environment. Harris had

no interest in performing this rewrite since many of

the problems were avoided by using their new 500 and

800 series systems. However, CWRU was left wi th /6's

which must be made usable. For several reasons

(manpower, experience, etc.) it was not deemed f easible

- 1 -

- 2 -

for CWRU (ARJCC in particular) to rewrite Vulcan or to

write an entirely new operating system for the /6.

Inspi red by other's successes wi th UNIX [10] [13]

(14], ARJCC decided to initiate a project to port

Version 7 UNIX to the Harris /6. UNIX was to provide a

base from which to build CWRUnos, CWRU's network

operating system. The UNIX project was divided between

two graduate students - Sam Leffler, who wrote the C

compiler for the /6 [12], and myself, who ported the

UNIX operating system to the /6. Although the /6 is

based on

paging

a very old architecture, a sophisticated

system has been added to the basic design. The

thesis of this work is that the UNIX operating system

can be ported to the Harris /6, and that it can be

further modified and extended to support demand paging.

1.2. UNIX

The UNIX operating system [20] is a general

p urpose time s h aring system for medium scale

minicomputers, typically with l28K 2M bytes of

memory, 5M 100M bytes of disk storage, and 8 - 32

terminals. It was originally designed for · the PDP-ll

family of minicomputers by Ken

Ritchie of Bell Laboratories and

Thompson and Dennis

is distrib uted by

Western Electric. UNIX is written almost ent irely in

- 3 -

the C language [11] [19], a medium to high level

systems programming language with much of the flavor of

PL/I .

Being written in C has made it possible for UNIX

to be ported to several other machines, including the

DEC VAX-11/780 [13], Interdata 7/32 [14] and 8/32 [10],

Zilog Z8000, and Amdahl 470. Work is also underway to

port UNIX to many other machines such as the Motorola

68000 and the BBN C machine. This work concerns the

porting of UNIX to the Harris /6.

Most implementations of UNIX are swap-based

systems, requiring a process to be entirely resident in

memory to run, and removing a process entir e ly from

memory when space is needed. There are a few

exceptions. The Bell UNIX system for the VAX performs

partial swaps, only removing part of a process from

core if possible. However, the entire process must be

resident to run. The Amdahl UNIX system i s built on

top of VM370 and so is, in some sense, a paged system,

although UNIX itself does not perform any pag ing. The

Berkeley UNIX system for the VAX is a true paging

system. It is an extensively modified version of the

Bell VAX system that fully supports the VAX paging

hardware. The UNIX system for the Harris /6 (called

UNIX/24V) described herein is also a true paging

- 4 -

system. The /6 virtual memory hardware is fully

utilized to provide a true demand paged UNIX system.

1.3. Hardware Configuration

UNIX/24V was first developed on a /6 with 192KW

of memory, one model 5200 cartridge disk (10.8MB), one

model 6600 magtape drive, a console interface connected

to a DECwriter II, one DMA Communications Processor

(DMACP, a 6800-based intel"ligent terminal multiplexer) ,

and a model 4125 Dataproducts line printer. It was

later moved to a system with 208KW of memory, one model

5550 high capacity storage module disk (300MB), one

model 6600 magtape driver, a console interface with

DECwriter II, four DMACP'S, and a MUX with 10 terminal

ports. Only UBC channels were used for the disk and

tape interfaces. The c onsole interface was slightly

modified to allow connection to a DECwriter instead of

a TEC terminal, which Vulcan requires (see Appendix B) .

1.4. Synopsis

Chapter II describes the /6 architecture its

registers, I/O and interrupt structure, etc. The use

of /6 registers by the C compiler is also descr ibed.

Chapter III describes the UNIX virtual machine

model - the virtual machine expected by the UNIX kernel

- 5 -

itself. The UNIX view of processes, memory management,

and processor modes is described.

Chapter IV describes how the UNIX virtual machine

was mapped to the /6. The actual porting of UNIX is

described, including the changes made to data

structures and procedures.

Chapter V deals with the modifications made to

UNIX to support demand paging. The data structures and

algorithms introduced and changed will be described in

detail.

Chapter VI contains conclusions, performance

observations, and suggestions for further research.

CHAPTER II

THE /6 ARCHITECTURE

2.1. Overview

The /6 is a 24 bit per word, word addressable

machine. It is based on the Datacraft 6024

architecture. The 6024 originally had a 15 bit address

space and was later expanded to 16 bits and then 18

bits. Be cause of this, the addr e ssing structure is

neither clean nor consistent. The newer 500 and 800

series machines allow a 20 bit address space.

The /6 contains 8 programmer-accessible registers

and 2 pseudo registers. The registers are not general

purpose; each register is intended for a different

function. The follow ing paragraphs de scribe the

reg is t e r s [6] . The use of the register s in code

generated by the C compiler is also briefly described;

for more information see [12].

A Register The 24-bit
arithmetic
arithmetic
used as
reg ister.

A register is the main
register. It contains complete

and shift capabilities and is
the input/output communication
In C code this register is used

- 6 -

- 7 -

as the general
register.

arithmetic and shift

E Register The E register is a 24-bit general
register. It is also used as an extension
of the A register for additional shifting
and arithmetic capability.

D Register The D (Double) register is a 47-bit
pseudo-register consisting of the A and E
registers. It provides double-precision
capability. The A register contains the 23
least significant bits and the E register
contains the 24 most significant bits. In
C code this register is used to manipulate
long integers.

I, J, and K Registers The I, J, and K registers are
24-bit index registers. The I register
must hold the byte pointer wh e n replacing
bytes in memory. The J register must hold
the byte pointer when extracting bytes from
memory. The J register is also used for
subroutine linkage. The K register is used
for the frame pointer in C code.

B Register The B (Byte) register is a pseudo-register
consisting of bits 0-7 of the A register.
It provides byte manipulation capability.

C Register The C (Cond i tion) register is a 4-bit
register that stores and displays the
results of specific operations. The
following conditions are indicated:
Overflow, Negative, Zero, and Positive.

H Register The H registe r is a sing le bit register
associated with the Bit Pr oce s s o r feature.

V Register The 18-bit V register is provided with the
Bit Processor feature. This register is
used to store a base addres s of an
effective memory location conta ining the
bit to be manipulated. .

2.3. Instruction Set and Addressing

The /6 is essentially a one address machine.

Each instruction can specify at most one memory

- 8 -

address. Instructions exist to move data from register

to register and between registers and memory. Although

the format of instructions appears quite regular, not

all instructions can be applied to all combinations of

operands (see [12] for more details) .

Most memory reference instructions are able to

specify a IS-bit memory address, an optional index

register for indexing, and optional indirection through

the resulting effective address (Figure 2.1a) .

Indirection (optionally with indexing) can continue to

any level. Since the address field of the instruction

is only 15 bits wide, only 32K words can be directly

addressed. However, the Program Counter is 16 bits

wide. The first two 32KW sections of an address space

are referred to as Map 0 and Map 1, determined by the

high bit of the pc. All direct references using the

instruction format described above can only address

within the current 32KW map; that is, the high bit of

the PC is or'ed into the effective add re ss for all

direct references. To access any address i n the lower

64K words of memory, without regard to wh ich map the

program is executing in, one level of indiiection must

be used. The instruction specifies indirection through

the effective address, which contains a Direc t Address

Constant (DAC) which can be used to address an y word in

- . 9

op code * X. IS-bit address

I
23 18 14 0

Direct Addressing

op €ode HEf 16-bit address

·1
23 18]5 0

Long Branch Instructions

H .~ I~.· 16-bit address l
19 16 IS 0

Standard Indirect Format (DAC)

'~--------18-bit address:----------~

17 o
Long Address Format (LAC)

~--------18-bit address--------~

21 18 17

Byte Address Constant (BAC)

Figure 2.1 - Instruction and Addressing Formats

- 10 -

the first 64K words of memory (Figure 2.1b).

Although up to 64KW may be used for instructions,

the total address space of the /6 is 256KW. Only data

may appear above 64KW. (Note that not even

instructions executed by the execute memory (EXM)

instruction may reside above 64KW. This has important

implications later.) To address any word above 64KW a

Long Address Constant (LAC) must be used (Figure 2.lc).

Note that bit 20 must be be set to a one for the

address constant to be recognized as a LAC. If bit 20

is not set, the effective address is truncated to 16

bits. This causes problems with pointers in C. It

would be quite natural when referencing through a

pointer to merely indirect through the location where

the pointer is stored. This is not possible, however,

since bit 20 will not be set in the pointer. If bit 20

were set in the pointer, address arithemtic would

become quite complex, since bit 20 would have to be

masked off. Again, see [12] for more details.

The addressing mechanism described abov e suffices

to address any word-aligned data item . However, to

address characters, a different address format is

required (Figure 2.ld). The low 18 bits specify a word

address and the high 2 bits specify a byte offse t. The

byte offset may have the value 1, 2, or 3 specifying

- 11 -

the first, second, or third byte of the word. Bytes

are numbered from the left. Special instructions exist

to increment a byte pointer to point to the next byte,

handling byte offset incrementing, and wraparound to

the next word. See [12] for more discussion of the

problems caused by this byte addressing technique.

2.4. I/O System

The following discussion of channels and

interrupts greatly simplifies what is actually possible

in the /6. Features that are not used by UNIX or that

are best ignored are not discussed here. For complete

details see the appropriate Harris documentation

[6] r7] [8].

2.4.1. Channels and units

I/O devices on the /6 are addressed by a channel

number and a unit on that channel. Programmed I/O of

words or bytes is possible to un its that support this

mode of data transfer -- most terminal and line printer

interfaces. DMA transfers are controlled on a per

channel basis on channels that are equ~pped for DMA

transfers. The channel's responsibility is to control

DMA transfers and to pass control and status

information between the CPU and the individual device

controllers attached to the channel. The channel has

- 12 -

very little knowledge of the device controller attached

to it, which is quite different from devices on the

PDP-II. A PDP-II device controller integrates the

functions of DMA control and device control into one

unit. Since these two functions are separated into two

pieces of hardware on the /6, special programming

considerations are necessary. For example, when the

device indicates an error condition that prevents data

transfer and the channel is still "conditioned" for the

data transfer, the data tr ansfer must be aborted in the

channel before another command can be issued.

2.4.2. I/O Instructions

There are several instructions available for

communicating with I/O devices. However, not all

instructions are recognized by all channels and units.

The channel number and unit number are coded as part of

the instruction word. Therefore, each I/O instruction

can apply to only one channel and unit. This makes it

difficult to write a reentrant device driver for a

group of devices all of which are the same except for

their channel and unit numbers. All I/O instructions

use the A register to transmit or receive data or

status. The I/O instructions are described in the

following paragraphs.

- 13 -

OCW The Output Command Word instruction transfers a
command word to the specified channel/unit
combination. The command word specifies the
operation the peripheral device is to perform. It
may also be used to enable or disable device
interrupts.

ISW The Input Status Word instruction retrieves
current status of a device. The low 8 bits of
status are set by the device and the high 3
are set by the channel. The channel status
indicate, among other things, whether or not
is active.

the
the

bits
bits

DMA

IDW The Input Data Word instruction requests a
specific channel/unit combination for a data word.
The data word is often an 8 bit data byte from a
character oriented peripheral device, such as a
terminal. Some devices also use it to return an
extended status word.

ODW The Output Data Word instruction transfers a
single word to the specified channel/unit
combination. This is most often used to transfer
single bytes to character oriented devices.

OAW The Output Address Word instruction is used to
initialize a DMA-type channel for DMA activity.
The A register contains the address of a parameter
block, which has the format shown in Figure 2.1.
The first word of the . parameter block contains the
word count for the DMA transfer. The second word
contains the address from/to which the data is to
be transferred. For data chaining, the word count
and buffer address are repeated as many times as
necessary, with the chain bit set appropriately.
For command chaining, the new command word
precedes the word count for each chained
operation. Note that the chain list must be
contiguous in memory. After the channel is
initialized with an OAW, an OCW is used to start
the transfer.

lAW The Input Address Word instruction returns the
next address to be written to or read f rom for a
DMA operation.

IPW The Input Parameter Word instruction return s the
address of the parameter block controlling the
current DMA operation.

- 14 -

2.5. Priority Interrupt System -------------------------

The /6 has two separate interrupt groups, Group 0

and Group 1. Group 0 is reserved for internal CPU

functions and . is composed of up to 8 executive trap

levels. Group 1 is reserved for external interrupts

and may have a maximum of 24 levels.

The 8 executive traps correspond to specific CPU

features, many of which are optional, and are therefore

permanently assigned to specific levels. Level 0 is

the highest priority trap, and level 7 is the lowest.

The executive traps and corresponding interrupt levels

are as follows:

o - Power Down
1 - Power Up
2 - Program Restri~t
3 - Instruction Trap
4 - Stall Alarm
5 - Interval Timer
6 - SAU Overflow/Underflow
7 - Address Trap

All Group 0 traps are higher priority than Group 1

traps.

Each peripheral device is given one interrupt

level in Group 1. Interrupt levels and signal ing are

completely separate from the

addressing described above.

device channel/unit

Level 23 is the lowest

- 15 -

level and level 0 is the highest level. When a

particular interrupt level is active, all lower levels

are prevented from interrupting.

Each interrupt level has associated with it a

memory location that may be thought of as the interrupt

vector location. The correspondence between interrupt

group and level and memory address is shown in Figure

2.2. When an interrupt occurs, an Execute Memory (EXM)

instruction with the appropriate memory address as

operand is simulated. The instruction stored in the

interrupt vector will almost always be a Branch and

Save Long (BSL) instruction, which causes the PC and

condition codes to be saved and the interrupt routine

to be entered. The interrupt routine must save the

registers. To return from the interrupt, a Branch and

Reset interrupt Long (BRL) instruction is used. The

BRL instruction loads the condition codes and PC that

were saved (in the first location of the interrupt

routine) by the BSL instruction.

Several registers are used to

external device (Group 1) interrupt

control the

system (Figure

2.3). The

register.

first register is

It is the "first

the Arm/Disarm (A/D)

level of defense" for

incoming interrupts. If a particular interrupt level

is not armed and that interrupt is triggered, it will

- 16 -

Address (octal) Interrupt
--------------- ---------

60 power down
61 power up
62 virtual memory violation
63 instruction trap
64 stall alarm
65 interval timer
66 SAU overflow/underflow
67 address trap
70 Group 1 Level 0 - hard parity error
71 Group 1 Level 1 - soft parity error
72 Group 1 Level 2
73 Group 1 Level 3
74 Group 1 Level 4 - console terminal
75 Group 1 Level 5
76 Group 1 Level 6 - magtape
77 Group 1 Level 7 - disk

100 Group 1 Level 8
101 Group 1 Level 9 - DMACP #1
102 Group 1 Level 10 - DMACP #2

103 Group 1 Level 11 - DMACP #3
104 Group 1 Level 12
105 Group 1 Level 13
106 Group 1 Level 14
107 Group 1 Level 15
110 Group 1 Level 16
111 Group 1 Level 17
112 Group 1 Level 18
113 Group 1 Level 19
114 Group 1 Level 20
115 Group 1 Level 21 - line clock

116 Group 1 Level 22 - second clock

117 Group 1 Level 23 - reschedule

Figure 2.2 - Interrupt Addresses

- 17 -

be lost. Interrupt levels for devices that exist in

the system are usually armed at initialization time and

never disarmed.

The next register is the Request register. If an

interrupt level is armed and the interrupt is

triggered, the Request register will be set. The

Request register may be set under program control to

cause a software interrupt.

The Enable/Inhibit (E/I) reg ister controls

further processing of an interrupt request. If the

interrupt request bit is set, the level is enabled, and

no higher prioYity interrupt is active, the interrupt

will be processed as described above. If the level is

not enabled, the request will be saved and will cause

the interrupt to become ac~ive if the level is later

enabled, assuming no higher priority interrupt is

active.

Once an interrupt request "passes through" the

A/D and E/I registers, it may become active if no

higher (or same) priority interrupt is active. When an

interrupt becomes active, the Active register is set.

When an interrupt is active, the corresponding

level may be disabled. This places the interrup t in a

"permissive" state. When this occurs, lower priority

- 18 -

EXTERNAL TRIGGERS; OR BITS
OF E REGISTER D~ING T04

INSTRUCTION.

ARM/DISARM
REGISTER CJi I: 0: I: I: I: 0 I b: ARMED

DISARMED

REQUEST
REGISTER

23 22 5 432 I

~ ~ I
o

t EX TERNAL TRIGGER AT
l...-___ THIS LEVEL IS IGNORED

ENABLE/INH IBIT
REGISTER CJj 0 : 0 > > : 0: I b :

ENABLED
INHIBITED

23 22 5 4 3

7HIS LEVEL IS WAITING FOR . ~
HIGHER LEVELS TO BECOME ~
INACTIVE OR PERMISSIVE .
(SEE DETAIL BELO"",

2 I 0

tL _____ THIS LEVEL IS WAITING
TO BE ENABLED

FROM REQUEST REGISTER OR
___ ----- BITS OF A REGISTER DURING

T04 INSTRUCTION

~g¥~ER ~ £ 0 : 0 : 0 : t : 0 : 0 I b : t~rCV~VE
23 22 5 4 :3 2 0

ENABLE/INHIBIT

ACTIVE/PERMISSIVE
STATE

LTHIS LEVEL CAN BE PLACED __ ~
IN A PERMISSIVE STATE

2

ENABLED
INHIBITED

t
L
____ PREVIOUSLY ACTIVE lEVEL

INHIBITED BY PROGRAM

~ 1 = ACTIVE o = INACTIVE

~= PERMISSIVE

Figure 2.3 - Interrupt Registers

- 19 -

interrupts may interrupt without the need for the

interrupt in the permissive state to be reset. The

permissive interrupt may later be enabled, at which

point it will become active ag ain. The BRL

instruction, which is used to return from an interrupt

service routine, will reset the highest priority active

(not perm i ss i vel inter r upt.

2.6. Virtual Memory System

The /6 provides a virtual memory system that

supports demand
/'

pag ing . virtual memory system The

allows execution of programs that are only partially

loaded into memory, thus allowing programs larger than

the physical memory size to be run. Each process

executing on the /6 is divided into a collection of

1024 word pages which need · not be contiguous in main

memory. Each process may be composed of no more than

256 pages. Pages may be protected with read only or

read/write attributes, allowing pages to be shared

between processes.

2.6~1. Modes of Operation ------------------

The /6 operates in two modes monito r and user.

In monitor mode, the paging logic is disabled, and all

addressing is to physical memory. In user mod e, the

paging logic is enabled, and all addresses are

- ' 20 -

translated by the virtual memory system from logical

addresses to physical addresses. The virtual memory

system may only be manipulated when the CPU is in

monitor mode. Any virtual memory system instructions

executed in user mode are treated as i lleg al

instructions.

2.6.2. Virtual Memory System Registers

The virtual memory system contains several

registers that control its operation. The se registers

are described below.

VARs The virtual memory system contains 4096 Virtual
Address Registers. The VARs map logical addresses
to physical addresses. Each VAR is 10 bits, the
bottom 8 bits contain a physical page number. The
top 2 bits contain access mode information. Each
process is allocated a contiguous set of VARs,
defined by the Virtual Base Register and virtual
Limit Register for · the process. The VARs thus
defined correspond to the logical pages of the
process. The VARs may be thought of as the page
table for the process.

VBR The Virtual Base Register is a 12 bit register
that contains the number of the first VAR assigned
to the currently executing process. The VBR must
be context-switched between processes.

VLR The Virtual Limit Register defines the last VAR
used by t he currently ex ecuti ng process. It is a
10 bit register. The bottom 8 b its con t ain the
number of VARs used by the current pro c ess, minus
1. Bit 8 is the ROM suppression bit ; see the
discussion of the ROM instruction below . Bit 9,
when set allows the current process to execute a
set of' instructions that would other wise be
illegal. This set,of instr~ctions ,includes the
I/O and priority lnterrupt lnstructlons . The VLR
must also be context-switched.

- 21 -

VUR There are 256 of these 1 bit Virtual Usage
Registers. Each VUR corresponds to a physical
memory page. Each time a physical memory page is
accessed, the corresponding VUR is set.

VNR There are also 256 Virtual Not-modified Registers,
each 1 bit. When a physical memory page is
written in to, the corresponding VNR is set.

VUB The 8 bit Virtual Usage Base register controls
access to the VURs and VNRs. The contents of the
VUB define which VUR or VNR will be accessed by
the Query virtual Usage Register (QUR) and Query
virtual Not-modified Register (QNR) instructions.

VSR The 12 bit virtual Source Register defines which
VAR is read for t'he Transfer 2 virtual address
Registers to Double (TRD) instruction.

VDR The 12 bit Virtual Destination Register serves a
similar purpose as the VSR for the Transfer A to 1
virtual address Register (TAR) and Transfer Double
to 2 virtual address Registers (TDR) instructions.

VPR The 12 bit Virtual demand Page Register provides
information about page faults. The low 4 bits
contains the reason for the page fault and the
high 8 bits contain the logical page number in the
current process that caused the page fault.

2.6.3. Basic Address Translation

In the /6 virtual memory system, physical and

logical memory is divided into 1024-word pages. A

mapping scheme is applied to all memory references.

The VBR, VLR, and VARs work together to perform the

mapping. Figure 2.4 illustrates the mapping technique.

h (b 't In 17) of a memory reference T e high bits 1 s v-

specify a logical page in the user's address space.

Th ' b' compared with the VLR to check for 1S page num er 1S

a page-out-of-range violation. The page number is

" .
'; ' ~:': . :

r~~~~~-s~··::··::--~-~· ·· - .~-- . ~ .. ~,".-::-~-. ::. ~£§" ... "'.-.. " .;- ,,". -' : ~""':".. ,', .
. : ','r. , : 4" ., •

. ~.-.::-:---:- .~ . . :.... . " .
. ~. " '.'_" " .•.. ,F-.. ,: ~ !_: .•.... ~ ' ." : ' .. ,:" , :- ... =~ . : _ .. . ,, :-'~oI~: ~;= :" .

22 :'.- :-:: - -. :

. : .. .
_ .f:. ,"

. ,:, .'.

":".-,

..... ,. ,:: .. '- ~-' ?-:' .. : ... :: .. ~ • ~ - <00

.. ,- ",:, .
: -.~ ... : - .-..

. '

LOA-CE D u-<oa "0CI..u&
. CC><l1Ol ty

TOI' INSllUCTIOH

. ,' . '"" -"': .. -' " :

..... ::. j~:;:'~:';:-.:': :-':- .
-- ',-- - -' ..

-.. :-",
... .. -, ''; ~ -.

.'

. - - -- .:..:. :~-... ,'-_::.; -

" , ,:,

. ----. _. -"'- '

__ r_· . :;.
. . . .' - '

-.-', '. " ' .. ~', " _.f .. .

....

,'- .~ .. ; 'o· ! .. ~ • .:"

. " - :.

':-___ ..,._.:.:.. __ J ' : :':J~?.jttjt: ;:.;
-....... .

:-" ": ~" :.~: : .': ..
. . ::'.: :". ':.~

. _.- . --... ~--

~~~~~~L-L-~~ 

'.~ =. .... ;. 

. " --:~~'--.. -. 
VAl. ~.~-~ .... --,., 

.. -'~~ ': ""' .... 

'. " 

' -. " 

. : .. 

uua 
WOlD 

(OHfOl • .m' • 

~ - . 

Figure 2-4. Basic Address Translation, Virtual N--.emory User ~de 

:':"~ ... :. : 

... ..... 

::...:: ... . ... . ~ .. 

-' 



- 23 -

added to the VBR to obtain the number of a VAR. The 

access mode bits of the VAR are compared with the 

intended access type (read/write) to determine if the 

access is allowed. A demand page violation (page not 

resident in memory) may be signalled at this point. 

Otherwise, the physical page number in the VAR replaces 

the logical page number in the memory reference and the 

instruction is performed. 

It can be seen from the above discussion that 

each user process will need a contiguous set of VARs to 

map its pages. The particular set of VARs used is 

specified by a base-bounds mechanism, the VBR and VLR. 

Note that since the VARs are a limited resource, it may 

not be possible to allocate a set of VARs to each 

process all the time. This problem, and its solution, 

is discussed in more detail in Chapter IV. 

2.6.4. Virtual Memory Violations 

The virtual memory system recognizes several 

violation conditions and generates an interrupt (Group 

0, Level 2) so that the operating system may take 

corrective action. When this (or any) interrupt 

Old l°n monitor mode before occurs, the CPU 1S p ac e 

executing the ha rdwar e generated EXM through the 

o The VPR may be examined to dete r mi ne 1nterrupt vector. 



- 24 -

the nature of the violation. 

Fo ur different virtual memory violations are 

possible . The first is a limit register violation. 

This occurs when an access is made 

greater than the value specified 

second and third types are access 

to a page number 

in the VLR. The 

violations. They 

occur when a write attempt is made to a non-writable 

page and when an execute attempt is made to a non­

executable page. The last violation type is a demand 

page violation. A demand page violation occurs when 

the VAR for the accessed page specifies that the page 

is not resident in memory. In all cases, the user's PC 

can be backed up and the instruction retried after 

corrective action has been taken. The VPR specifies 

how much to back up the PC. The corrective action may 

consist of, for instance, loading a page into memory 

for a demand page violation, or making a page writable 

for a write violation. The only instruction that may 

not be recovered from properly after a page fault is a 

Transfer Memory to Registers (TMR) instruction that is 

indexed, since the index register may be loaded before 

the page fault occurs. 



- 25 -

2 .6. 5 . Virtual Memory Instructions 

Several instructions are provided to manipulate 

the virtual memory system. Most of them transfer data 

t o or from the A or D register or test the state of 

virtual memory system registers. These instructions 

will be described briefly below. 

TDS The Transfer Double to Source and destination 
registers instruction loads the VDR with the 
c ontents of the A register and the VSR with the 
contents of the E register. 

TSD The Transfer Source and destination registers to 
Double instruction loads the E register with the 
con tents of the VSR and the A register with the 
c ontents of the VDR. 

TAR The Transfer A to 1 virtual address Register 
instruction loads the VAR specified by the VDR 
with the contents of the A register. The VDR is 
incremented by one. 

TDR The Transfer Double to 2 virtual address Registers 
instruction loads the VAR specified by the VDR 
with the contents of the E register. The VDR is 
then incremented by one. The VAR now specified by 
the VDR is loaded with the contents of the A 
register. The VDR is again incremented by one. 

TRD The Transfer 2 virtual address Registers to Double 
instruction loads the E register with the contents 
of the VAR specified by the VSR. The VSR is then 
incremented by one. The A register is then loaded 
with the contents of the VAR now specified by the 
VSR. The VSR is again incremented. 

TDP The Transfe r Double to Paging lim i t registers 
instruction loads t he VSR with the contents of the 
A register and the VLR with the contents of the E 
reg ister • 

TPD The Transfer Paging limit register s t o Double 
instruction loads the A register with the conte nt s 
of the VLR and the E register with the content s of 



- 26 -

the VBR. 

TUD The Transfer Usage base register and demand page 
register to Double instruction loads the A 
register with the contents of the VPR and the E 
register with the contents of the VUB. Note that 
bits 4 - 11 of the VPR replace bits 16 - 23 of the 
A . register and bits 0 - 3 of the VPR replace bits 
o - 3 of the A register. 

TEU The Transfer E to virtual Usage base register 
instruction loads the VUB with the contents of the 
E reg ister . 

QUR 

QNR 

The Query Usage Register instruction sets 
condition register to "zero" or "not-zero" if 
contents of the VUR specified by the VUB is 0 
1, respectively. The specified VUR is cleared 
the VUB is incremented by one. 

the 
the 
or 

and 

The 
the 
the 
or 
and 

Query Not-modified Register instruction sets 
condition register to "zero" or "not-zero" if 

contents of the VNR specified by the VUB is 0 
1, respectively. The specified VNR is cleared 
the VUB is incremented by one. 

ROM The Release Operand Mode instruction will cause 
the effective memory address of the following 
instruction to be translated by the virtual memory 
system. The ROM instruction has no effect if the 
ROM suppression bit i p. the VLR is set. 

RUM The Release User Mode instruction causes the CPU 
to enter user mode. The RUM does not take effect 
until a branch instruction is executed. 
Therefore in practice, the instruction following 
the RUM should always be an unconditional branch. 



CHAPTER III 

THE UNIX VIRTUAL MACHINE 

This chapter discusses the UNIX virtual machine 

model, that is, the type of machine that is well suited 

to the UNIX kernel. The type of machine facilities 

required for a reasonable implementation of UNIX will 

be described. Facilities required by almost all other 

multi-user operating systems (such as an interrupt 

driven I/O system, some sort of user/system protection, 

etc.) will not be discussed. The UNIX virtual machine, 

as seen from the user's point of view, is described in 

( 20] , [18], and (10]. The kernel's virtual machine, 

and how it is used to implement the user's virtual 

machine, will be described here. 

3.1. Processes 

UNIX provides user programs with an address space 

consisting of up to three logical segments. The text 

segment starts at the beginning of the user's virtual 

address space, contains only instructions and constant 

data, and is write protected. A single copy of the 

t ext segment is shar ed among all it s users. The text 

, program is not 
segment may be empty if the user s 

- 27 -



- 28 -

reentrant. In this case, the instructions would reside 

in the data segment. The data segment starts at the 

next hardware protection boundary after the text 

segment, is writable, and is private to each process. 

It may be expanded by explicit system calls. The stack 

segment starts somewhere after the data segment and may 

grow either up or down, depending on what is most 

natural for the particular implementation. The stack 

segment grows automaticaily. On the PDP-II, VAX, and 

/6, the stack grows down. On the Interdata 8/32, the 

stack grows up. 

Each process also has associated with it a system 

stack. The system stack is used when the 

executing procedures the 
, 

behalf, on user s 

servicing system calls. The system stack is 

the system's per-process context block, 

called the 'u vector' or 'user structure'. 

system is 

such as 

located in 

generally 

The u vector contains any per-process information 

that is not needed when the process is swapped out of 

memory. Information about a process that must always 

be available is stored in the proc structure, which is 

always resident. The u vector contains the following 

types of information : 



- 29 -

(i) State information, including saved registers, 
disposition of signals, label variables, etc. 
Does not include scheduling state information, 
such as process state (running, blocked, etc.) or 
priority. 

(ii) Identity information, identifying the user that 
owns the process. 

(iii) File information, describing open files and the 
current directory. 

(iv) System call information, including arguments and 
return values. 

(v) Mapping information, describing the size of each 
of the logical segments and how it should be 
arranged in memory. 

(vi) Accounting information, such as execution times. 

3.2. Memory Management 

In most implementations of UNIX, including the 

PDP-Il and Interdata versions, the three logical 

segments described above are grouped into two segments 

for memory management purposes. The text segment is 

allocated contiguously in memory as one piece. It is 

also swapped as a single piece. The data and stack 

segments are allocated together in one piece of memory. 

They are packed as closely together as is possible, 

given the granularity of the memory management 

hardware. On the PDP-1I, for instance, the data 

s egmen t resides at the beginning of the allocated piece 

of memory, and the stack segment resides at the end. 

The physical hole between them will be smaller than t he 



- 30 -

logical hole between them. Therefore, to expand the 

data segment or stack, a new piece of memory must be 

allocated, the data segment copied to the beginning of 

it, the stack segment copied to the end of it, and the 

new space in the middle added to the data or stack 

segment, depending on which one is expanding. Since 

there may not be enough contiguous memory (and since 

UNIX does no memory compaction) , it may be necessary to 

swap the combined data and stack segment out to disk 

and bring it back in a larger memory area, when 

available. Also, UNIX makes no attempt to allocate 

incremental pieces at either end of the combined data 

and stack memory segment to minimize the amount of 

copying necessary. 

Although the above scheme may require large 

amounts of data to be moved around, it greatly 

simplifies the problem of swapping segments in and out 

of memory, since all segments are contiguous in memory 

and on disk. Given more sophisticated memory 

management and I/O systems, many of the problems of the 

PDP-ll scheme may be avoided. In UNIX/32V on the VAX, 

memory is allocated a page at a time, and the pages 

need not be contiguous . All pages of t he pr ocess must 

b e resident in memory for the process to execute since 

UNIX/32V does not support demand paging. Swap spac e is 



- 31 -

allocated contiguously, but only a part of a process 

needs to be swapped out, if only a small amount of 

memory is needed. The partially swapped process may 

then be reloaded with much less I/O activity than if it 

had been fully swapped. In VM UNIX on the VAX, memory 

is allocated a page at a time and demand paging is 

supported. Swap space is allocated in mUlti-page 

chunks but the chunks need not be contiguous with each 

other. In UNIX/24V on -the /6, both memory and swap 

space is allocated a page at a time and demand paging 

is supported so that the process need not be entirely 

resident in memory to execute. 

As can be seen from the above discussion, a wide 

variety of memory management schemes are possible in 

UNIX. It is hard to state precisely the minimum 

requirements of the memory management hardware, but it 

seems that a single base and limit register (or even 

dual registe rs, if it is desirable to write-protect the 

text segment) are marginal, because of the difficulty 

of providing independently growable data and stack 

segments. Al most any sort of segmentation or paging 

system s eems to be qui t e adequa t e . 



- 32 -

It should be obvious from the above discussion 

that some sort of mapping must be applied to all user 

memory references to provide the proper (safe) virtual 

machine for each user. However, because of the way the 

kernel does context switching, the kernel must also run 

in a mapped mode. The u vector is context switched by 

changing the kernel's mapping registers so that a new u 

vector is mapped into the same address in the kernel's 

logical address space. This method of context 

switching has several advantages. The u vector can be 

directly addressed at all times because it is at a 

fixed location in the address space, as opposed to 

being referenced indirectly through a pointer. Also, 

since the system stack is in the u vector, it is 

necessary that the u vector always have the same 

logical address. Otherwise, any addresses stored on 

the stack that point to other locations on the stack 

(most importantly, the stack frame linkage) would no 

longer point to the proper place. 

It is most desirable to have at least two sets of 

mapping registers, one for the current user process and 

one for the kernel. One set of mapping registers can 

be managed, but they will have to be reloaded on every 

system call and interrupt. It is almost necessary that 



- 33 -

mapping not be associated with running in user mode, as 

demonstrated in the above discussion. On the /6, 

mapping and user mode are tied together, which caused 

several problems that are discussed in the next 

chapter. 

3 . 4~ I/O 

UNIX does not require anything particularly 

unusual in terms of i/O capabilities. Priority 

interrupts, DMA, and programmed I/O are assumed to be 

available, but almost anything could be made to work. 

Although existing PDP-II device drivers assume the 

PDP-II's form of memory-mapped I/O addressing, other 

I/O schemes can be made to work just as well if the 

proper primitives are chosen. The next chapter 

discusses this for the par t icular case of the /6. 



CHAPTER IV 

THE /6 UNIX SYSTEM 

Now that the /6 architecture and the UNIX virtual 

machine have been described independently, this chapter 

will show how the UNIX virtual machine was modelled 

with the /6. In many respects, this was a process of 

making the /6 look like a PDP-II. There were also 

cases where UNIX had to be changed because there was no 

convenient way to model some constructs on the /6. The 

logistics of the porting process will first be 

described, followed by a description of the 

implementation of the UNIX virtual machine. The 

solutions to problems alluded to in previous chapters 

will also be described. Finally, the swap-based /6 

UNIX system will be described. The paged /6 UNIX 

system is described in the next chapter. 

4.1. The Port 

The hardware to which UNIX was ported was 

described in Chapter I. This hardware was reserved for 

UNIX development. Additionally, there was a large /6 

system running Vulcan, the standard Harris operating 

system, that was also available for the UNIX porting 

- 34 -



- 35 -

project. 

Before any attempt was made to move pieces of 

UNIX to the /6, some experimentation was done with 

small standalone programs. Most of this early work 

depended heavily on having workable facilities on 

Vulcan. An old C compiler, developed by the University 

of Wisconsin, was used to experiment with standalone C 

code on the /6. A set of standalone startup and 

bootstrap programs were written that allow programs 

compiled by the Wisconsin C compiler to run on a bare 

machine without Vulcan. These standalone programs were 

written to magtape in a form suitable for the /6 ROM 

bootstrap, so that they could be booted on a bare 

machine. 

By using these standalone facilities, it was 

possible to experiment with I/O devices and gain some 

insight into their proper operation. Most of the 

Harris manuals were either vague, ambiguous, or 

conflicted about how to program most of the I/O 

devices. Simpl e standalone programs were constructed 

to "expe rim en t " with the I / O devices and determine the 

prope r way to program them . 

The development of the /6 UNIX system was 

intimately tied to the development of the /6 C compiler 



- 36 -

by S. J. Leffler [12]. The C compiler started as a 

cross compiler on the PDP-ll/45, producing symbolic 

assembler code. As modules of the UNIX kernel were 

rewritten for the /6, they were compiled on the PDP-ll 

to check them for compile-time errors. The diagnostics 

of the portable compiler were very helpful here. 

When enough of the kernel modules were converted, 

the assembler code was moved to Vulcan, assembled, and 

linked. The standalone modules written for the 

Wisconsin C compiler were rewritten to be compatible 

with the linkage conventions of the portable C 

compiler. This method allowed many of the modules of 

the UNIX kernel to be tested and debugged. 

At this point it was necessary to have a UNIX 

file system on the disk so .that the file system modules 

of UNIX could be debugged. The make-file-system 

program (mkfs) was converted to run on Vulcan under the 

Wisconsin C compiler. File systems could be built in 

an 'unblocked' file on vulcan. The file was then 

copied to a disk pack by a privileged Vulcan program. 

The disk pack was then moved to the UNIX development 

mach ine for further testing . 

Soon after it was possible to build file systems, 

the portable C co~piler was ported to Vulcan. Prog r ams 



- 37 -

could then be compiled and run on Vulcan; cross 

compiling was no longer necessary. A library of UNIX 

system call interfaces was written and small test 

programs using UNIX system calls were built. These 

test programs were put on the UNIX file system by mkfs 

(under Vulcan) in place of the /etc/init program. The 

/etc/init program is the first program run when UNIX is 

started. This method allowed most of the UNIX system 

call and file system code to be debugged. 

In parallel with the previous task, many of the 

UNIX user programs were being converted to the /6. A 

simple 'init' program and shell were created in order 

to provide an environment in which to test many of the 

other UNIX user programs. The real init program was 

converted and installed once the necessary system calls 

were tested and working. This process prompted several 

redesigns of some of the system call interfaces, in 

particular the signal system call interface. 

Several ARJCC staff members helped port many of 

the UNIX user programs, such as the editor and the 

Bourne Shell. It is the large number of small UNIX 

tools that make UNIX such a usable system, and the 

large number of programs converted at this point helped 

make the /6 UNIX system a real UNIX system. 



- 38 -

Once the UNIX environment was seen to be 

reasonably stable and functional, Work was begun on 

many of the programs necessary to support C programming 

on the /6 UNIX system. These programs included an 

assembler, a loader, the make program, the yacc 

compiler-compiler, and the Standard I/O Library that is 

used by almost all UNIX programs. When these programs 

were operational on UNIX, it was possible to move the C 

compiler itself from Vulcan to UNIX. This provided a 

fairly complete program development environment on 

UNIX; the most important item missing was a debugger. 

Several additions to the C compil e r (described in [12]) 

provided a program tracing facility that helped the 

debugging effort. 

With the C compiler resident on UNIX, the only 

thing remaining to be done was to move the kernel code 

to UNIX and build a new UNIX system on UNIX itself. In 

the process of doing this, several assembler bugs were 

discovered and quickly fixed. It then became possible 

to build new UNIX systems and new C compilers on UNIX, 

no longer nec essitating t he development of UNIX 

programs on Vulcan. At t h i s point UNIX was self­

supporting. 

The UNI X system developed by the preceeding 

method was a swap-based system . It used the /6 virtual 



- 39 -

memory hardware to simulate the 

management scheme. The next phase 

consisted of two tasks performed in 

PDP-II memory 

of development 

parallel. The 

first task was to write and test device drivers for 

many of the devices on the /6. The initial UNIX system 

contained drivers for only the disk, magtape, and 

console terminal. Drivers for the DMACP terminal 

multiplexer, Dataproducts line printer, and 300MB disk 

were written and tested.· The second task was the 

design of the paging system, which is discussed in 

Chapter V. 

4.2. Data Structures 

Due to the word size of the /6, many of the 

fundamental data structure of UNIX had to be changed. 

Although the sizes of most.of the data structures are 

well-parameterized in the UNIX kernel, other 

implementations of UNIX have tended to keep them the 

same as the PDP-II version of UNIX. This was usually 

possible because the word size of the other machines 

was generally a multiple of 2 bytes. The /6 word size 

is 3 bytes, which is incompatible with the PDP-II sized 

data structures. 

Although some of the data structures could have 

remained the same size, some inefficiency or waste 



- 40 -

would have r esul ted. Al ignment problems were 

particularly important in data structures that are 

stored on disk. In general, most data structures were 

extended so that they were larger than the 

corresponding PDP-l1 data structure. This tended to 

reduce the number of portability problems, at least in 

porting from the PDP-ll to the /6. Any program that 

takes advantage of the larger /6 data structures could 

be difficult to port back to the PDP-ll or other UNIX 

systems. 

The data structures of concern here are those 

that reside on disk. Data structures residing only in 

the kernel were easily changed, either by changing a 

defined constant specifying the size of the data 

structure, or by changing the type definitions of the 

elements that make up the data structure. These 

changes can be easily seen by reading the system source 

code. The other data structures are described here. 

4.2.1. Disk Blocks 

The first and most important "fundamental 

constant" was the size of a disk block. On the PDP-ll 

and VAX, a disk block is 512 bytes, which is the size 

directly suppo r t ed by the ha rdware. The disk hardware 

on the /6 supports a disk block (sector) size of 11 2 



- 41 -

words (336 bytes). There were two concerns with this 

size of disk block. First, when storing a page (1024 

wo rd s) on disk, some space is wasted. Looking forward 

to the paging system, it was thought to be desirable to 

align pages of executable programs on disk sector 

boundaries to simplify moving them between memory and 

disk. The second concern was that many of the data 

structures that are stored in disk blocks (such as 

directories and inodes) - assume that a power-of-2 of 

them will fill a disk block. It was felt that changing 

this would have far-reaching implications. 

To resolve the above problems, it was decided to 

use a pseudo disk block size of 512 words. This would 

allow a page to be stored in two disk blocks. Data 

structures would also fit easily. The size of 512 came 

about as a compromise of several considerations. The 

pseudo disk block was to be implemented by using 

several contiguous disk sec tor s, with each new block 

starting at the beginning of the next sector. 

Therefore, the amount of waste at the end of the last 

sector of a block was important. Either 512 or 1024 

word blocks offered an acceptably small waste. The 

amount of waste is as follows: 



block 

512 
1024 

sectors 

5 
10 

- 42 -

waste 

48 words, 8.6% 
96 words, 8.6% 

The percentage of waste is the same in either case. 

Blocks of 1024 words would be particularly convenient 

when manipulating pages in the paged version of the 

system, as well as when swapping programs in the 

swapped version. However, 1024 words was felt to be 

much too large; it is six-times the size of the PDP-II 

blocks . This would reduce the number of blocks that 

could be kept in the UNIX kernel's buffer cache, thus 

reducing the effectiveness of the cache. 512 word 

blocks seemed to offer a reasonable compromise among 

size, waste, and convenience. 

4.2.2. Inodes 

An inode describes a file; its owner, location on 

disk, etc. The locations of disk blocks that comprise 

the file are specified by a list of disk addresses. 

All but the last three of these addresses are disk 

addresses of blocks that contain the contents of the 

file. The last three disk add resses are pointers to 

blocks contain i ng more pointers to blocks that actually 

contain the f il e information. The three pointers 

specify single, double, and triple indirect bloc ks . I n 

the PDP-II and VAX versions of UNIX, this list of disk 



- 43 -

addresses is a list of 13 24-bit addresses packed into 

40 bytes. Since neither the PDP-II nor the VAX can 

directly operate on 24-bit data items, a packing and 

unpacking operation is required when inodes are moved 

between memory and disk. The total size of a PDP-II 

inode is 64 bytes, allowing 8 inodes to fit in a single 

disk block. 

On the /6, the list of disk addresses is a simple 

(unpacked) array of 20 pointers. The total size of an 

inode is 32 words, allowing 16 inodes to fit in a 

single disk block. The number of disk address pointers 

was adjusted to make the total size of an inode a power 

of 2; the size of the other information in the inode 

was fixed and could not be adjusted. The structure of 

a /6 inode is as follows: 

struct dinode 
{ 

} ; 

unsigned 
short 
short 
short 
off t 
daddr t 
time t 
time t 
time-t 

short d i mode; 
d i 1 ink; /* 
di-uid; /* 
di-gid; /* 
di-size; /* 
di-addr [20]; 
di-atime; /* 
di-mtime; /* 
di-ctime; /* 

/* mode and type of file */ 
number of links to file */ 
owner's user id */ 
owner's grou? id */ 
number of bytes in file */ 

/* disk block addresses */ 
time last accesses */ 
time last modified */ 
time created */ 

The list of 20 disk addresses allows 17 direct, 1 

indirect, 1 double indirect, and 1 triple indirect 



- 44 -

pointer. This allows 17 + 512 + 512*512 + 512*512*512 

= 134480401 blocks (206561895936 bytes, approximately 

200GB) to be addressed. However, since the size of the 

file is stored in a variable of type 'off_t', which is 

defined to be a long integer, a file as large as 

140737488355328 bytes (approximately 140000GB) can be 

specified. The actual maximum file size allowed is the 

smaller of these two, about 200GB. Even this is larger 

than the maximum size of a- UNIX file system volume, 

25769803776 bytes (approximately 25GB), which is the 

real limit because disk addresses are stored in a 24-

bit word. 

4.2.3. The Super-Block 

The super-block is the second disk block on a 

file system volume, the - first being reserved for 

bootstraps. It specifies the size of the disk, the 

size of the list of inodes (the i-list) , and serves as 

the head of the free list of unused disk blocks. There 

are two arrays of information in the super-block. The 

first 1S an array of free blocks, the head of the free 

list. The second is an array of i-numbers (indexes 

into the i-list) of inodes that are unallocated. This 

is used only as a cache of unallocated i-numbers; the 

real allocation information is a part of each inode . 

All other parts of the super-block are essentially 



- 45 -

fixed in size. The sizes of these two arrays were 

increased so that the super-block would completely fill 

a disk block. The sizes are as fallows: 

array parameter PDP-II size /6 size 

free list 
i-numbers 

---------
NICFREE 
NICINOD 

-----------
50 

100 
250 
246 

The sizes of these arrays were chosen somewhat 
arbitrarily. Some instrumentation could be performed 

to determine if these relative sizes are appropriate. 

4.2.4. Directories ------ -----------

A directory entry has the following structure: 

struct direct 
{ 

} ; 

ina t d ino; 
char d-name[DIRSIZ]i 

/* the i-number */ 
/* the file name */ 

On the PDP-II (and VAX) , DIRSIZ is 14, making the total 

size of a directory entry 16 bytes. 32 directory 

entries would fit in a single disk block. On the /6, 

the structure is the same and DIRSIZ is 21. The total 

size of a directory entry is 8 words, ~llowing 64 

directory entries to fit in a single disk block. 

The file name size of 21 characters was chosen so 

that it was at least as long as the PDP-II size (to 



- 46 -

ease porting of user programs), and so that a power­

of-2 of directory entries would fit in a disk block. 

The only problem here is that if any /6 UNIX programs 

were to depend on file names being 21 characters long 

(or anything more than 14 characters) , portability back 

to other UNIX systems could prove difficult. This is a 

problem for the author of /6 UNIX programs; if he is 

never told of the longer file names, there should be no 

problem. 

4.2.5. Other Data Structures 

Few other data structures caused problems as 

difficult as the ones described in the previous 

section. One other data structure that did cause quite 

a few problems was the clist. The clist (character-

list) is a linked list . of structures containing 

characters that are input from or output to tty devices 

(other uses are possible; this is the most common one) . 

While the size of clist elements did not cause any 

great problem, the addressing of them did. The 

machine-independent algorithms for manipulating the 

clist were machine-independent only on machines that 

were byte addressable with a power-of-2 bytes per word. 

The clist routines assumed that addresses of clist 

elements could be shifted and masked in certain ways, 

which did not work at all on the /6. These routines 



ps 

- 47 -

were rewritten to be more machine-independent. 

4.3~ Kernel Mode 

As described in Chapter II, the /6 operates in 

two modes, monitor mode and user mode. The virtual 

memory hardware is enabled in user mode and disabled in 

monitor mode. As was seen in Chapter III, the UNIX 

kernel must operate with mapping enabled. To overcome 

this problem, kernel mode was defined. Kernel mode is 

a variant of user mode, the difference being that the 

privileged instruction bit in the VLR is set in kernel 

mode and reset in user mode. Although kernel mode is a 

mapped mode, the VARs for kernel mode are set up to map 

logical addresses to the same physical addresses. 

Mapping is enabled, but no "mapping" is actually 

performed except for the mapping of the u vector. All 

UNIX kernel software determines the state of the 

machine (kernel or user) by the state of the privileged 

instruction bit in the VLR. The state of the virtual 

memory system (enabled or disabled) is not considered. 

Note that the combination of the virtual memory state 

and privileged instruction bit defines 

only three of which are ever used. 

instruction bit is never reset when 

monitor mode. 

four 'modes', 

The privileged 

the CPU is in 



- 48 -

Although almost all of the kernel can run in 

kernel mode, not all operations can be performed in 

this mode. Since interrupts put the CPU in monitor 

mode, kernel mode must be established before the 

interrupt routine is called. Also, the return from the 

interrupt routine can only be done from monitor mode. 

In addition, it is not possible to execute any of the 

virtual memory instructions in kernel mode, since they 

would cause an illegal instruction trap. Therefore, to 

perform any operation that must use virtual memory 

instructions, a special machine language routine is 

used. Each such machine language routine first enters 

monitor mode using the method described later. The 

routine then performs the needed function and reenters 

kernel mode. 

This switching between monitor and kernel mode is 

not straight-forward. To switch from monitor to kernel 

mode it is first necessary to load the VBR and VLR with 

values that map the kernel address space. The RUM 

instruction is then used to enter mapped kernel mode. 

To switch from kernel mode to monitor mode is somewhat 

more complex. The / 6 has only two mechanisms that 

cause it to ente r monitor mode. The first is the BLU 

instruction, wh i ch is th e s tand ar d s ystem call 

i n struction used in vulcan . As described in the 



- 49 -

section on system calls (Section 4.4), BLU instructions 

were reserved. The second method is an interrupt. The 

easiest interrupt to generate from software is an 

illegal instruction interrupt. Therefore, the method 

to enter monitor mode is as follows. First, the global 

variable 'nofault' is loaded with the address where it 

is desired to enter monitor mode, usually a few 

instructions ahead. Second, an illegal instruction is 

executed, usually a TDP instruction. The illegal 

instruction interrupt handler checks the value of 

nofault. If non-zero, it returns there in monitor 

mode. Otherwise, a real illegal instruction has 

occurred and normal interrupt processing continues. 

This mechanism is used extensively (and only) in the 

machine language assist. 

The following code fragment is typical of the 

method used to switch between kernel and monitor mode. 



func: 

1: 

·bli 
tmi 
tma 
tam 
toa 
tam 
tpd 

csv 
! 2, k 
nofault 

*!stack 
If 
nofault 

- 50 -

/ save argument in register 
/ save old value 
/ on stack 
/ where to return to 
/ in monitor mode 
/ cause illegal inst trap 

< perform fuction here> 

rum / reenter kernel mode 
buc • +1 / at next instruction 
tme *!stack / restore old value 
tern nofault / of nofault 
bul cret I return 

Although this scheme works and is, in fact, necessary, 

it may generate a somewhat significant amount of 

overhead when switching between kernel and monitor 

mode. Measurement of the number and frequency of these 

switches would be interesting, but has not been 

attempted. 

4.4. System Calls 

System calls are the means by which user programs 

may request the system to perform tasks on their 

behal f. System calls in the / 6 UNIX system are 

implemented as an illegal instruction. A Transfer 

Double to Limit register (TDL) instruction was chosen 

as the system c all instruction because it is illegal in 

both user and monito r mode , and the l ow o r der b i ts of 

the instruction could be used to encode the system call 



- 51 -

number. This instruction is available as the sys 

opcode in the UNIX assembler, as. 

The /6 has an instruction, the Branch and Link 

Unrestricted (BLU) instruction, that is used by Vulcan 

as the system call instruction. It enters monitor mode 

and branches to a specified location in low core, 

saving the return address in the J register. There 

were two reasons for not using this as the UNIX system 

call instruction. First, it destroys the J register, 

which would have to be saved before every system call, 

thus complicating the system call interface code. 

Second, it was felt to be desirable to be able to trap 

these calls from a user program so that Vulcan programs 

could be simulated. Therefore, BLU instructions are 

not used as system call instructions; instead they 

generate a signal to the offending process. 

When the user executes the sys instruction, an 

illegal instruction trap is generated, and the kernel 

trap routine is called. The trap routine determines 

what instruction caused the trap. If it was a sys 

(TDL) instruction, arguments are collected and the 

appropriate system call routine is called. Otherwise, 

an illegal instruction signal is sent to the process. 



- 52 -

Arguments to system calls are passed via a 
parameter block. The address of the parameter block is 
loaded into the I reg ister before executing the sys 
instruction. This is completely different from the 
method used on the PDP-II. Some arg umen ts to some 

system calls are loaded in registers, while others are 

stored in-line, after the sys instruction. Therefore, 

to keep the text segment pure, it is often necessary to 

store the system call and arguments in the data segment 

and perform an indirect system call. Also, the 

arguments that were pushed on the stack before calling 

the system call interface must be moved to registers or 

to the parameter block after the sys instruction. On 

the /6, it is almost never necessary to do an indirect 

system call, and parameters rarely need to be moved 

around. In nearly ever y. case, the contents of the 

parameter block correspond exactly to the arguments of 

the C-callable system call procedures described in 

section 2 of the UNIX Programmer's Manual [22]. This 

makes most of the system call interface routines (that 

allow C programs to execute system calls) to be very 

simple. The prototypical system call interface routine 

is as follows: 



- 53 -

syscall = number 
syscall: 

tmi ! stack 
sys syscall 
bno , +2 
bul cerror 
bjl 0 

/ get pointer to param block 
/ do the system call 
/ skip if no error 
/ else return error 
/ return, result in A or D 

This sequence of instructions is probably sufficient to 

implement 95% of all system call interfaces. One 

notable exception is the signal system call. 

In order to properly- interface with C functions 

that are to be used to trap signals, a small amount of 

machine language code is needed. Therefore, instead of 

trapping directly to the C function, the signal system 

call interface arranges that it be called instead of 

the C function. The C function that must be called 

eventually is stored in a table. The small in t erface 

routine that is called wh e n the trap occurs dispatches 

through this table to call the C function. On return, 

it executes the return-from-signal system call, 

described in the next section. 

4.5. Si9:,nals 

The implement ation of signals in the /6 UNIX 

system diffe rs signi f icantl y from the PDP-II 

implementation. The diffe rence is primarily in the 

signal tr apping mechanism. The PDP- I I s upport s a stack 

d irectly in hardware. The natural form of interrupt 



- 54 -

routine entry and exit uses the stack. On the /6, the 

stack is simulated; there is no direct hardware 

support. Interrupt routine entry and exit is 

inherently non-stack oriented. It is not desirable to 

model software interrupts (signals) after the hardware 

interrupt mechanism of the /6, since recursive 

interrupts are not allowed by this method. 

Signal trap routine entry and exit is handled 

extensively by the kernel. Before calling a signal 

trap routine, the kernel pushes the current state of 

the user process on the user's stack. This state 

includes all the registers, the Program Counter, and 

the condition codes. This implies that the kernel has 

access to the user's stack pointer. As described in 

[12], the user's stack pointer is implemented as a 

regular memory location. Since this memory location 

changes with each user program, the kernel must know 

the address of the stack pointer for each user. This 

is accomplished by forcing the user program to tell the 

kernel where its stack pointer is. For Cprograms, the 

standard C startup code issues a special signal system 

call that contains the address of the stack ' pointer as 

a parameter. Another method considered was to have the 

loader put the address of the stack pointer in the 

a.out header of the executable program . Thi s wa s 



- 55 -

rejected because it is not necessary for all programs 

to have a stack. For instance, non-C programs may 

choose different linkage conventions and may not need a 

stack. 

To return from an interrupt routine, the state 

pushed on the stack by the kernel must be popped off 

and restored. A new system call was added to do this 

the return-from-signal system call. This system 

call will restore the user's registers from the values 

stored on the stack. The PC and condition codes are 

also restored from the stack. Any of the values stored 

on the stack may have been changed by the signal trap 

routine. In particular, if the PC is changed, the 

program will return to a different point. 

4.6. VAR Allocation 

Each 

contiguous 

user 

set 

process on /6 UNIX must 

of VARs to map its pages. 

have a 

To map the 

maximum size process, 256 VARs are necessary. These 

must be allocated out of the pool of 4096 VARs 

available on the machine. The first 256 VARs are 

permanently allocated to the kernel, leaving enough to 

map 15 maximum size processes. It was not felt that it 

would be sufficient to map only 15 processes at once. 

The overhead of loading VARs is considerable and should 



- 56 -

be avoided if at all possible. 

The first step towards a solution of this problem 

involved adding some complexity to the allocation 

scheme. Since very few processes really need 256 VARs, 

it is preferable to allocate each process only as many 

as it would need. This implies that the stack could 

not start at the same fixed place (the end of memory) 

for every process. The loader was modified to select a 

variable stack size based on the size of the program 

being linked. The stack size is placed in the 

previously unused word of the a.out header. The kernel 

uses this information to decide how many VARs to 

allocate for the program. It is possible to override 

the default stack size when linking the program if it 

is known that the program will need an exceptionally 

large or small stack. 

The second optimization was to allocate VARs only 

for processes that were loaded in memory. When a 

process is swapped out, its VARs are freed. Before 

swapping the process back in, a new set of VARs is 

allocated for it. This reduced the number of VARs used 

by processes that could not run because they were 

swapped out. 



- 57 -

. As mentioned above, the overhead of loading the 

VARs for a process every time it is run is significant. 

Therefore, it was desirable to minimize the number of 

times the VARs must be reloaded. In the PDP-II UNIX 

system, prototypes of the memory management registers 

for the process are stored in the process u vector. 

Every time the process is run, these prototype memory 

management registers are biased to reflect the process' 

location in memory and loaded into the real memory 

management registers. In the /6 UNIX system, it was 

not advantageous to keep prototype VARs in the u 

vector . Instead, copies of the actual VARs are kept 

there. Since the hardware VARs are loaded from the u 

vector by a machine language routine, this greatly 

simplified the operation of this routine. However, 

unlike the PDP-II, the /6 VARs need only be reloaded 

when the real memory address of the process changes, 

instead of every time it is run. 

A flag in the proc structure for each process is 

used to indicate that the hardware VARs must be 

reloaded from the copies in the u vector. This flag is 

set whenever the VARs in the u vector are changed 

for instance, when the stack or data segment grows. 

This flag is che cked before running the process and, if 

set , th e ha r d ware VARs are reloaded . The re are also 

I I 



- 58 -

times when the VARs are explicitly reloaded. This is 

usually done when the software VARs have been changed 

and the kernel then needs to access the user's address 

space. 

4.7. I/O and Interrupts 

4.7.1~ I/O Instruction Primitives --------------------------

On the /6, I/O can not be performed directly from 

C as it can on the PDP-II with its memory mapped I/O. 

Therefore, it was necessary to write small machine 

language routines that performed the I/O instructions. 

The problem was: how primitive should these routines 

be? A routine could be written for each I/O 

instruction that merely executed the instruction with 

appropriate data. These routines would be very short, 

only a few instructions. A similar approach could be 

taken, but each routine could perform retries if the 

channel was busy. These routines would be somewhat 

longer, maybe 10 to 20 instructions. Lastly, a very 

high level approach could be taken: having a routine, 

for instance, that would start a DMA operation. Such a 

routine would take several parameters and execute 

several different I/O instructions. 

Since th e last approach was so different from the 

PDP-Il , it was not clear what the primitives should be . 



- 59 -

Therefore, it was not considered any further. It is 

necessary to further explain the difference between the 

first two approaches. When an I/O instruction is 

issued, it is possible that the channel may not be 

ready to accept the instruction. However, if the 

instruction is retried several times, the channel may 

soon become ready. The channel indicates its readiness 

by setting the 'zero' condition code bit. This bit may 

be tested to determine if a retry is necessary. In the 

first approach described above, it would be necessary 

to do these retries from the C program. In the second 

approach, these retries would be done in the machine 

language assist. 

The second approach is the one that was adopted. 

It implements primitives very close to those of the 

PDP-II, thus allowing many of the PDP-II device drivers 

to serve as a basis for /6 device drivers. The 

primitives implemented retry each I/O instruction 20 

times before failing. If the channel has not responded 

after 20 tries, it is probably broken. A value of -1 

is returned as the result of the function call to 

indicate that the operation could not be performed. 

Note that -1 may also (but rarely) be a valid return 

value from some of the input i nstructions. Few of the 

existing device drivers check this returned val ue, 



- 60 -

assuming that if the device is no longer functional, it 

will be evident from other status indications. A more 

fault tolerant system may wish to check these return 

values. 

As was seen in Chapter II, different I/O 

instructions must exist for each channel and unit that 

must be addressed. Therefore, the I/O procedures could 

not directly execute I/O intructions, or a different 

I/O procedure would be needed for each device. The 

solution involved building an array of I/O instructions 

for each device (actually, for each channel/unit). 

This array contains all of the possible I/O 

instructions, with the appropriate channel and unit for 

the device. The array is initialized by the 'devinit' 

procedure, which is called by each device's open 

routine. The I/O procedures described above are passed 

the address of this I/O instruction array. The 

procedures then use an Execute Memory (EXM) instruction 

to execute the appropriate I/O instruction. The 

devinit procedure also initializes the interrupt vector 

for the device. 

4.7.2. Priority Levels 

The most difficult primitives to model on the /6 

were the set-priority-level primitives of the PDP-ll. 



- 61 -

The /6 has no equivalent mechanism for directly 

manipulating the priority level of the interrupt 

system. Instead, the Enable/Inhibit register must be 

manipulated when it is necessary to prevent a class of 

devices from interrupting. The use of the PDP-II 

interrupt levels is as shown in the following table: 

level 
7 
6 
5 
4 
3 
2 
1 
o 

devices 
no device interrupts 
clock 
disks, magtapes, multiplexers 
terminals, paper tape 
not used 
not used 
used by clock routine 
base priority 

Note that the clock is the highest priority device, 

followed by DMA devices and simple terminal devices. 

Priority level 1 is used only by the clock routine. 

The interrupt structure of the /6 is quite 

different. A typical configuration is shown below: 

level 
o 
1 
4 
6 
7 
9 

21 

device 
hard parity error 
soft parity error 
console terminal 
magtape 
disk 
DMACP 
clock 

Note that the clock is the lowest priority device and 

the console terminal is the highest priority device . 



- 62 -

This is exactly the opposite of the PDP-II. 

There are procedures named spli, where # is a 

priority level, that are used to set the processor 

priority level. Each of these routines returns the 

previous priority level. A procedure called splx is 

used to set the priority level from a previously saved 

value. On the PDP-II, these routines are very simple, 

using the spl instruction. On the /6, these routines 

had to manipulate the E/I register in unorthodox ways. 

Although these routines are fairly general in 

description, they are used in quite specific ways. The 

most common use is to raise the processor priority 

while manipulating certain data structures so as to 

provide mutual exclusion to the data structures. The 

priority is then lowered after manipulating them. The 

sp14 and splS procedures are used by device drivers so 

that they are not interrupted while manipulating 

private data bases. The sp16 and spl7 procedures are 

used when manipulating global data bases such as the 

clist and buffer cache. 

To model the spl procedures on the /6 it was 

necessary to group the device interrupts together to 

simUlate the pr iority levels of t he PDP-II. There are 

thr ee groups . The first group contains only the hard 



/ 

- 63 -

parity error interrupt and is always enabled. The 

second group contains only the clock. The third group 

contains all other devices. The spl4 and spl5 routines 

(which are the same) inhibit interrupts for all 

devices. The spl6 and spl7 routines (which are also 

both the same) inhibit interrupts for both the clock 

and all devices. This allows the normal uses of the 

spl procedures to function compatibly with the PDP-II 

versions. 

4 . 7~3. Clock Interrupt Handler 

The only unusual use of the spl procedures on the 

PDP-II is in the clock interrupt routine. It uses 

these routines to lower the current priority level. 

Before executing timeout procedures, the priority is 

lowered to level 5. Before performing the once per 

second housekeeping, the priority is lowered to level 

I. The clock interrupt routine checks that the 

previous priority level was zero before lowering it to 

1. This prevents the clock from executing this section 

of code when it has interrupted another interrupt 

routine, or when it is already executing it. 

The /6 clock interrupt routine is quite 

different. Since the clock is the lowest priority 

device, it must raise the processor priority before 



- 64 -

executing the timeout procedures. Also, an entirely 

different mechanism is used to perform the once per 

second housekeeping. Every second, if the processor 

was at base priority, a software interrupt is triggered 

on level 22. This interrupt is handled by the second 

clock routine which performs the once per second 

housekeeping. Having the second clock execute at a 

priority level lower than the main clock achieves the 

same effect as lowering the priority to level I in the 

PDP-II, but is much simpler and safer on the /6. 

Another difference between the PDP-II clock and 

the /6 clock is that the /6 clock interrupts with a 

frequency of 120 HZ, as opposed to 60 HZ on the PDP-II. 

This caused only minor problems in the kernel since the 

clock frequency is an easily changed 'define'd 

constant. Many user programs assumed that the clock 

frequency was 60 HZ. The 'time' command was the most 

obvious offender. Timeouts caused the only problem in 

the kernel. Most routines that requested a timeout 

assumed that the clock frequency was close to 60 HZ. 

When the timeouts are used to time delays for 

terminals, quite different results are obtained if 

clock frequency is twice as fast. To correct this 

problem without changing al l t he proced ures that 

r equested a timeout, the timeout procedure was chang ed 



- 65 -

to scale its argument from 60 HZ to the actual clock 

frequency. 

4.7.4. Device Interrupts 

All device interrupts are handled by a common 

routine and then dispatched to the individual device 

drivers. Each device interrupt is first handled by a 

small interface routine. There is an interface routine 

for every device. The interface routine is responsible 

for saving the current processor state in a static data 

area reserved for the device, a nd for restoring the 

state before returning from the interrupt. After the 

state is saved, the interface routine enters kernel 

mode (it was running in monitor mode) and calls the 

common device interrupt routine. The interface routine 

passes several parameters to the common routine (named 

'call'), such as the device interrupt handler to call 

and a parameter to pass to it. The common routine 

pushes the argument to the device interrupt routine on 

the stack and then calls the routine. 

The most important function of the common routine 

is performed wh e n the device interrupt routine returns. 

The runrun sched uling flag is set when it is necessary 

to reschedul e t he processor. Before return i ng from the 

interrupt, the runrun flag is examined . If set , and 



- 66 -

the interrupt would return to user mode, a level 23 

interrupt is reque~ted by software. This interrupt is 

interpreted by the 'trap' routine, and the scheduler is 

called. 

The next function of the common routine is to 

clear the idle flag. This will cause the scheduler to 

re-examine the process table: if it had been waiting in 

the idle loop. The common routine then enters monitor 

mode and returns to the interface routine that called 

it. The interface routine will restore the registers 

and return from the interrupt. 

4.7~5. 

Processor traps are handled in a manner similar 

to device interrupts. A common routine ('trap' in the 

machine language assist) handles all processor traps, 

call ing the C procedure 'trap' with an argument 

specifying the trap type. Small interface routines 

-exist as for devices. The interface routines are 

slightly different -- after saving the registers and 

entering kernel mode they move the saved registers onto 

the stack and then call the machine language trap 

procedure. The y also reset the interrupt they are 

servicing so t ha t the processor is at base priority. 

Th e trap procedure never returns to the inte r face 



- 67 -

routine. 

The common trap procedure is similar to the 

common device interrupt procedure. It moves arguments 

specified by the interface routine onto the stack and 

then calls the C 'trap' procedure. The first argument 

to the C trap procedure indicates the type of trap. 

The trap types are shown in the following table. 

number 
o 
1 
2 
3 
4 
5 
6 
7 
8 

12 
14 
15 

trap type 
power down 
power up 
virtual memory fault 
illegal instruction 
stall alarm 
interval timer 
SAU fault 
address trap 
parity error 
reschedule 
BLU 
unknown trap or interrupt 

The machine language trap pr ocedure performs the 

return from interrupt function itself. All external 

interrupts are held during the return sequence. The 

registers and PC to be restored are moved from the 

stack to a static data area. A BRL instruction can not 

be used to restore the execution state because the 

processor trap interrupt was reset by the interface 

routine. The refore, a complex sequence of 

i nstructions, including instruction modification , is 



- 68 -

needed to properly restore the previous state. 

4.7 . 6. Device Drivers -------

Most of the device drivers in the /6 UNIX system 

were based on similar drivers in the PDP-II system. 

The basic structure and logic of the PDP-II drivers 

were used in the /6 drivers, thus, greatly simplifying 

the task of writing /6 device drivers. Those device 

drivers that differ significantly from their PDP-II 

counterparts deserve discussion here. 

The /6 disk device driver was based on the PDP-II 

RK05 device driver. It was first used to control the 

Harris 10.8 MB disk, which is quite similar to the RK05 

in size and function. The device driver was later 

generalized to handle both the 10.8 MB disk and the 300 

MB disk. The new driver is table driven and easily 

expanded to handle other disks. This was possible 

because all of the Harris disks are very similar in 

programming, requiring only small device spec i fic 

routines. 

There is one feature worth noting about the /6 

disk driver. Since the disk driver controls many 

disks, the disk type is selected by the low 3 bits of 

th e maj o r device number . The se bits ar e used as an 

index into the table of disk descriptions. Therefore , 



- 69 -

the major device numbers for the blocked and raw 

versions of a disk must agree in the low 3 bits. 

Generally, the major device number of the raw device is 

16 more than the major device number of the block 

device. 

The only other device driver that is at all 

unusual is the DMACP device driver. The DMACP is a 

Motorola 6800-based intelligent terminal multiplexer. 

The interface between the DMACP and the /6 is quite 

sophisticated and general. Before it can be used, the 

DMACP memory must be loaded with the microcode that 

supports the terminal multiplexing function. The 

specific code used for UNIX is the same as that 

developed by Gingell for Vulcan [4]. Although this 

DMACP code is more than sufficient for Vulcan, it lacks 

some of the functionality that UNIX would like. It 

does not support either baud rate changes or use of the 

modem control signals. These are both software 

limitations; removing them is only "a simple matter of 

programming." 

The DMACP microcode is loaded by a user program 

from a file. A memory special device is used to access 

the DMACP memory for loading. The DMACP microcode was 

developed using a cross-assembler on Vulcan; no such 

cross assembler currently runs on UNIX/24V. 



- 70 -

4.8. System Initialization 

This section provides a brief description of the 

functions of the machine language system initialization 

procedure. The system initialization procedure 

performs three major functions. First, it initializes 

the first 256 VARs for the kernel (Figure 4.1). The 

first VAR is initialized as read/write since many data 

items are stored in the first page of memory. The 

following VARs, up to the end of the text segment, are 

initialized as read only. From the end of the text 

segment to the end of the kernel, VARs are initialized 

to read/write. The VARs from the end of the kernel up 

to the last VAR used by the kernel are initialized to 

no access (demand page). The last VAR used by the 

kernel (255) is initialized to the scheduler's u 

vector, which starts at the first page after the kernel 

data. The kernel's VBR and VLR are also initialized. 

The second function is to clear the bss segmen t of the 

kernel. This sets all otherwise uninitialized 

variables to zero and clears the scheduler's u vector. 

The last major initialization function is to 

determine how much physical memo r y is present in the 

machine. This i s done by s t or i ng a - 1 i n t he first 

word of every page and then reading it back. If a - 1 



page 

1 

t 

s 

255 

- 71 -

1------------------\ 
I vectors/data I 
1------------------\ 
I \ 
I \ 
I \ 
I text \ 
I \ 
\ I 
\ \ 

\------------------
I 
I 
I 
\ data 
\ 
\ 

\ 

\------------------
II / / I / I 
I 1// I I I 
I I I I / / / 
\/ / I / / / 
I I I hole I / 
I I I I / / I 
1/ / / / / / 
\ / I / / / II 
\ I I I / / / \ 
I----------------~-\ 
I u vector I 
\------------------1 

access 

RW 

RO 

RW 

none 

RW 

t = bytes_to_clicks(&etext) 

s = bytes_to_clicks(&end) 

Figure 4.1 - Kernel Logical Address Space 



- 72 -

is not read back, that page does not exist. Note that 

no interrupt or trap occurs when accessing physical 

memory that does not exist. 

After performing the above initialization tasks, 

the system initialization code calls the C main 

procedure. Main continues the initialization task, 

initializing some data structures, as in the PDP-II, 

and performing some machine dependent initializations. 

The machine-dependent initializations consist of 

clearing and freeing all unused physical memory, 

opening the console terminal, and enabling the parity 

and reschedule interrupts. 

4.9. Swap£ing 

As mentioned previously, two versions of the /6 

UNIX system were constructed. The first version was a 

swap-based system, which was used to bootstrap the 

second version which supports demand paging. This 

section describes the parts of the swapping system that 

are not present in the paging system. 

The swapping system was modelled after the PDP-II 

system. Most of the same data structures and 

algorithms are used. Both swap space and memory 

allocat io n are handled the same as in the PDP-II 

system . In fact, the differences can be isolated t o 



- 73 -

two areas: the movement of data between swap space and 

memory, and the setting up of user virtual memory 

registers. 

The 'swap' procedure is used to move program 

images between swap space and memory. On the PDP-II, 

an entire program image can be moved with one I/O 

operation. Although this is also possible on the /6, 

several factors make it more difficult. Since the /6 

UNIX disk blocks are really pseudo disk blocks that do 

not completely fill an integral number of sectors, it 

is not possible to write more than one block at a time. 

For example, if an attempt was made to write two blocks 

by specifying the starting disk address of the first 

block and specifying a word count of 1024 (2 blocks), 

the beginning of the second block would be written at 

the end of the last sector comprising the first block. 

This part of the sector is not normally used and would 

not be readable if the blocks were read one at a time. 

Fortunately, the /6 supports chained I/O 

operations. This allows I/O operations with several 

different addresses and word counts to be specified in 

one operation. Using the example above, the write 

operation for the first block would be specified, 

followed by the write operation for the second block. 

The chained I/O operations are stored in a contiguous 



- 74 -

area of memory_ The device channel 

retrieves the next I/O command in the 

previous command specified chaining. 

automatically 

list if the 

Therefore, to 

move an entire program image, a chain list can be built 

specifying the I/O operation for every block of the 

image. 

Chain lists are built by the 'bchain' procedure. 

The chain list is built in an array that is private to 

every disk device. The size of this array limits the 

number of I/O operations that can be chained together. 

At present, such arrays 

together operations for 

trade-off between space 

are large enough to chain 

up to 64 blocks. This is a 

(size of the array) and 

efficiency (number of I/O operations needed to move an 

image). Therefore, the swap procedure must divide the 

image into 64-block pieces and issue an I/O request for 

each one. The disk driver will (by calling bchain) 

break the request into a chain of single block 

requests. 

The other major difference between the swapping 

system and the paging system is in the handling of the 

user virtual memory prototype registers. In the 

swapping system, the VAR prototypes are stored in the 

p ro c e ss' u vector, as described previously . I n the 

. the VAR prototypes are not directl y paglng system, 



- 75 -

available. Instead, the u vector contains pointers to 

other data structures from which the VARs are created 

and the loaded. The next chapter contains the details 

of this scheme. 

4.10. General Portability Comments 

There are several assumptions implicit in the 

design of the UNIX kernel that affected its portability 

to the /6. The problems centered around the 

addressability of memory and the use of pointers. 

The first 

manipulation of 

problem 

the user's 

encountered was 

PC by the kernel. 

the 

The 

kernel assumed that all memory was inherently byte 

addressible and, therefore, that the PC must be of type 

"pointer to character" (char *). On the PDP-II, this 

causes no problems, even though the PC never points to 

a byte that is not word aligned. However, on the /6, 

the PC is a word pointer, which is quite different from 

a byte pointer in representation. When the kernel 

needed to increment the user's PC (for instance, to 

skip an instruction) it would add the number of bytes 

per word to the PC. Since the /6 PC is not a byte 

pointer, this type of operation did not work correctly. 

The solution wa s t o change all uses of the use r s PC to 

manipulate it as a word pointer instead of a byte 



- 76 -

pointer . A more general solution would be to 

byte parameterize the type (word, long word, or 

pointer) of the PC and manipulate it appropriately. 

A similar problem occurred when referencing user 

memory, for instance, to gather ~ystem call parameters. 

Several procedures exist to transfer bytes and words 

between user and kernel memory. The most often used 

ones are: fubyte and fuword (fetch user byte or word), 

and subyte and suword (set user byte or word). It is 

clear that a byte address should be provided to fubyte 

and subyte. However, byte addresses are also passed to 

fuword and suword. This would be necessary if non-word 

aligned words were to be manipulated. This does not 

occur on either the PDP-II or the /6. However, all 

address parameters to fuword and suword are converted 

to byte addresses; this conversion is free on the PDP-

11 but not on the /6. This caused no real problems on 

the /6, just unnecessary overhead. Since it may be 

desirable to perform such operations on other machines 

(such as the VAX), the use of user addresses should be 

parameterized in a manner similar to that suggested for 

the PC. 

Another 

re presenta tion 

problem caused 

o f add re s se s on 

by the varying 

the / 6 occ urred when 

unions of pointers were used. The 'buf' data structure 



- 77 -

contains an element that is a pointer to a buffer of 

data from a block on a disk. Depending on the contents 

of the buffer, it was desirable to reference the buffer 

using different types of pointers. Therefore, the 

pointer to the data buffer is really a union of 

pointers of various different types. Since all 

pointers on the PDP-II have the same representation, 

this causes no problems and satisfies the type 

constraints of C. However, on the /6, if the address 

is stored in one member of the union as a byte address, 

and then referenced by another member of the union as a 

word address, it will have the wrong format. The 

solution was to store the address as a byte address and 

insert type conversions whenever it was necessary to 

reference it as a word address. 

4.11~ Features Not Supported 

Those features described in the UNIX Programmer's 

Manual that are not supported in UNIX/24V are discussed 

in this section. Some of the problems expected to be 

encountered when implementing them are also discussed. 

4.11.1. Accounting 

The 'acct' system call is currently not 

implemented . The only problem one would expect to 

encounter is with the pseudo floating point 



- 78 -

representation of times. It may be desirable or 

necessary to rewrite the 'compress' procedure. 

4~11~2. Lock and Phys System Calls --------------------------
Neither the 'lock' nor 'phys' system call is 

implemented. The -lock system call, as implemented on 

the PDP-II, will probably not function as desired in 

the paged /6 UNIX system. If it is desired to lock in 

core every page the process is currently using or 

demand pages in, extensive changes may be required. 

The phys system call should be straightforward to 

implement. Since only three of the four possible flag 

values in the user's page table are used, the fourth 

could be used to indicate a mapping to physical memory. 

A special case in the 'sureg' procedure would recognize 

the new flag value and load the VAR appropriately. 

4.11.3. Process Profiling , 

Process profiling has been implemented in the 

swapping system and appears to work correctly. 

However, several problems arise in the paging system. 

The buffer into which the profiling information is 

accumulated must be locked into core. The reason for 

this is that the profiling is done by the clock 

in terrupt routine, at which point demand pag e 



- 79 -

interrupts can not be processed correctly. Therefore, 

the fix allowing profiling to work under the paging 

system is to have the profile system call lock all 

pages of the profile buffer into core. Of course, the 

pages must be unlocked at some time in the future. 

4.11.4~ Process Tracing 

No attempt has been made to implement any of the 

features supported by the ptrace system call. Several 

of the sub-functions that involve reading and writing 

the traced process address space and u vector are 

probably straightforward to implement. The real 

problem occurs with any of the tracing functions. It 

is not clear how to implement breakpoints on the /6. 

The /6 does support an address trap option, which would 

be very helpful for debugging. However, none of the 

machines on which UNIX/24V was developed had this 

opt ion. Al so, us i ng the ' add ress tr ap opt ion wo uld 

allow only one breakpoint at a time. Much work is 

required in this area. 

4.11.5. Ra~ I/O 

At one point, raw magtape I/O was supported by 

the 

or 

Currently, no raw I/O to magtape swapping system. 

disk i s supported. The di fficulty lies in 

constructing the proper chain list for the I/O 



- 80 -

operation. In the paging system, the pages involved in 

the I/O operation must also be locked in core. The 

chain list can become very complex, involving both data 

chaining and command chaining. Most importantly, since 

the chain list must be built based on the page table of 

the process requesting the I/O operation, it is not 

clear how to pass the chain list from the high level 

I/O routines to the low level disk drivers, or how to 

have the low level drivers build the chain list. The 

I/O system will probably have to be extended in some 

way for this to work well. 

4.11.6. Other 

Because of the amount of code involved, neither 

multiplexed files nor the packet driver are supported. 

Although it is claimed that both of these subsystems 

are portable, it is not clear how difficult it will be 

to port them to the /6. 

4.12. Summary 

This chapter has presented the changes necessary 

to port UNIX and the modelling of UNIX primitives to 

facilitate the implementation of UNIX on the /6. 

Changes to data structures were generally 

s t ra i ghtforward. Modelling of I/O primitives wa s onl y 

sl ightly more d ifficu1 t. Memory management using the 



- 81 -

/6 virtual memory hardware was somewhat more difficult, 

but provided few major problems until demand paging was 

added. The most difficult problems were the creation 

of kernel mode and the model l ing of the PDP-II 

interrupt system with the /6 priority interrupt 

hardware. 



CHAPTER V 

PAGING 

5.1. Overview 

The paged /6 UNIX system fully supports the 

demand paging facilities of the /6 hardware. A 256K 

word virtual address space is available to each 

process, divided into 256 pages of 1024 words each. 

The system is driven by a primitive balance set 

scheduler and uses a working set [3] page replacement 

policy. 

Several data structures are used to manage the 

user's virtual memory page tables, the virtual 

memory map, and the core map shown in Figure 5.1 and 

5.2. These data structures control the allocation and 

use of swap space and physical memory, on which the 

virtual memory concept is built. 

As described in Section 2.6, the /6 hardware 

support for paging centers around a set of 4096 Virtual 

Address Registers (VARS). The VARs are thus a limited 

resource used to store 'page tables' for some subset of 

all the processes in the system. A contiguous set of 

VARs must be allocated for use by a process before it 

- 82 -



- 83 -

page table file system swap space 

1--------1 1---------1 1 ________ 1 
1 1 1 1 1 I 
I 1----->1 1 1 1 
I 1 1 1 1 1 
1 1 1---------1 ---> 1 1 
1 1 1 1 1 
1 1 1 1-----___ 1 
1 1 virtual memory map 1 

1 1 1 core map memory 
1 1 1---------1 1 
I 1 1 I 1 1--------1 1----1 
I 1-----> 1 1------ 1 1 1 1 
I 1 1 1 1 1 1 1 
I I 1 1 I 1 1 I 
I 1-----> 1 1--------> 1 1--> 1 I 
I 1 1 1 1 1 1 1 
1 I I 1 1 1 1 1 
1--------1 1 1 1 1 1 1 

1 1 1--------1 1----1 
I 1 
1 1 
1---------1 

Figure 5.1 - Paging Data Structures 



- 84 -

can be allowed to execute. 

5.2. Virtual "Memory 

Each page of a user process is allocated from a 

system-wide pool of virtual pages, the size of which is 

limited by the amount of swap space allocated on 

secondary storage. Virtual memory is controlled by an 

array of structures, the virtual memory map, with one 

structure per page of virtual memory. The index of 

each structure in the array corresponds to the location 

of the virtual page in swap space. The (structures 

describing the) pages of virtual memory are linked 

together to form a list of free virtual memory. 

5.2.1. Page Tables 

A page table exists in the u vector of each user 

process. It is large enough to describe 256 pages, the 

maximum size of a process. Each page table entry may 

describe one of three types of pages; the type is 

specified by the flag field of the page table entry as 

defined in Figure 5.2. 

A flag value of PT_FILE indicates that the page, 

when first referenced, is to be read in from the file 

containing the pr ocess' image (page i , Figure 5.3). In 

d " 1 fl'elds specify the di sk t h i s case, two ad ltlona 



- 85 -

/* 
* the virtual memory map 
*/ 

struct vmmap { 
unsigned 
unsigned 
uns igned 
uns igned 
uns igned 
union { 

vm rpage:8; 
vm-refcnt:10; 
vm-loaded:l; 
vm-cow:l; 
vm=text:l; 

/* real page number */ 
/* reference count */ 
/* loaded flag */ 
/* copy on write */ 
/* text page */ 

unsigned vm bsp; /* bs procs using page */ 
struct vrnmap - *vm_next; /* free list */ 

} ; 
vm_un; 

/* 
* page table entry 
*/ 

#define PT FILE 0 
#define PT- ZERO 1 
#define PT-ALLC 2 

/* fill from file on demand */ 
/* zero filIon demand */ 
/* page is allocated in v. m. */ 

typedef union { 
struct { 

daddr t 
daddr-t 

/* used for file fill */ 
pte blkl; /* first block of page */ 
pte=blk2; /* second block of pag e */ 

} ; 
struct { /* used otherwise */ 

unsigned pte flags:2; /* PT xxxx flags above */ 
unsigned :22; /* overlap with pte blkl */ 
struet vrnrnap *pte_vmp; /* pointer to virtual page */ 

} ; 
} pte; 

/* 
* the core map 
*/ 

struct coremap { 

} i 

unsigned cm dirty:l; /* has been written */ 
unsigned cm-wanted:l; /* someone waiting for page */ 
unsigned cm-locked:l; /* locked in I/O */ 
unsigned em-intrans:l; /* in transit */ 
unsigned crn-alloe:l; /* page is allocated */ 
union { 

struct vmmap *cm vmp; /* ptr to virtual copy */ 
struct eoremap *cm-next; /* if free */ 

} cm un i 
unsigned cm used; 
unsigned cm_wsPi 

/* bs procs that have ref'ed */ 
/ * bal set procs in w.s. of */ 

Figure 5.2 - Data Structure Declarations 



- 86 -

addresses of the two halves of the page. These 

addresses were converted from file-relative addresses 

to absolute disk addresses when the process was 

initiated. (The loader has arranged for the pages to 

start on block boundaries; the '-z' flag to the loader 

invokes this option.) Because of the overlap between 

the flag field and the disk block field, only 22 bits 

are available to specify the first disk block address 

of a page. This limits the maximum size of a file 

system volume to 6442450944 bytes (approximately 

6.5GB), which is far larger than any disk drive 

currently available on the market. 

The overlap between flag and address fields was 

used to reduce the size of the page table so that it 

would not consume too much of the u vector. There are 

three methods for removing this restriction, were it 

felt to be desirable. 

1. 

2. 

3. 

The conversion from file-relative addresses to 
absolute disk addresses could be done at demand 
page time, instead of at process initiation time. 
In this case no addresses would need to be stored; 
the file offset could be deduced from the page 
number. 

The size of the page table could be increased. In 
this case, one must be careful that enough space 
is left in the u vector for the kernel stack. 

The block size could be changed f r om 512 words to 
1024 words . Only one disk addres s ~ould ~he n be 
needed to locate the page. This optlon wlll be 
discussed later. 



- 87 -

block executable file 

o 1-------------------1 
1 a.out header 1 

1 1--------------_____ 1 
1 1 

2 1 page 13 1 
1 1 

3 1--------------_____ 1 
1 1 

page table entry for page i 

1 1 1------------------------1 2i+l 1--------___________ 1 
1001 2i+l 1-_______ >1 1 
1------------------------1 2 i+2 1 pag e i 1 
1 2i+2 1----____ >1 1 
1------------------------1 2i+3 1----------_________ 1 
23 21 13 1 1 

page table entry for page j 

1------------------------1 
11311 / I I I I / I \ 
\------------------------1" 
\ I I I I I I I 1\ 
\------------------------\ 

page table entry for page k virtual memory map 

\------------------------\ 1-------------------1 
\1131 I I I I I I I \ ----> \ 1 \ 1 1 1 
\------------------------\ 1 1-------------------1 
1 1----- 1 1 
1------------------------1 1-------------------1 

Figure 5.3 - Page Table Examples 



- 88 -

A flag value of PT ZERO indicates that, when the 

page is referenced, a virtual and physical page will be 

allocated and filled with zeroes (page j, Figure 5.3). 

This mechanism is used for bss data pages and for stack 

pages that are allocated dynamically. 

The third flag value, PT_ALLC, ind icates that a 
virtual page has already been allocated for this 
logical page of the process (page k, Figure 5. 3) • 

Another field of the page table entry points to the 

structure describing the virtual page. 

To allow sharing of virtual memory pages, several 

page table elements can point to the same virtual 

memory map. The reference count field specifies how 

many page tables are currently pointing to the 

particular virtual memory map. This count is used when 

deallocating a page to determine if there are still any 

users of the page or if it should be returned to the 

free list. In the current implementation, the only 

situation in which the reference count will be greater 

than one occurs when a data page is shared between two 

or more processes in a copy-on-write mode. 

~2.2. Copy on write 

Copy-on-wri te allows a data pag e t o be shared 

between processes in a read-only mode. If any process 



- 89 -

attempts to write into the data page, a private copy of 

the page is made and the process continues as shown in 

Figure 5.4. This allows sharing of pages that would 

otherwise be private. As implemented in UNIX/24V, 

pages are only shared in a copy-on-write mode between a 

parent and child process. This is essentially the same 

scheme used by Tenex [1]. Copy-on-write is implemented 

on the /6 by setting the VAR for the page to indicate 

that the page is read-only. The copy-on-write flag in 

the virtual memory map for the page is used to 

distinguish copy-on-write pages from normal da ta pages. 

If a write violation occurs for a copy-on-write page, a 

new virtual and physical page is allocated, the 

original page is copied, and the process is allowed to 

continue with the new page, which is now writ able. 

This mechanism greatly simplifies creating a copy of a 

process as requested by the fork system call. Instead 

of actually copying the process, a ll data pages of the 

process are marked copy-on-write. 

5.2.3. Shared Text 

Text segments may also be shar ed between 

processes. The page table for text segments is not 

kept in the process u vector. Instead, it is kept in 

1 h t · part of the ' t ex t ' data struc tur e. a page t ab eta 1 S 

The text structure describes all shared text programs 



page table . 
for user 1 

1--------1 

- 90 -

virtual memory map core map memory 
I I 1----____ 1 1 ________ 1 1 ________ I 
I \--===>1 1 _______ >1 1 __ >1 
I I I, I I I 1 
1--------1 \ 1 I I I I 

I 1 I I I I 
I 1 I I I I 

page table I 1 I I I I 
for user 2 I, \ I 1 I 

I I I I I I 
1--------1 I 1 I 1 I I I 
\ I I 1 I 1-_______ 1 1 ________ 1 
I 1--- I I. 
I I I I 
1--------1 1--------1 

Before write attempt into copy-on-write page 

page table 
for user 1 

\--------1 
virtual memory map core map memory 

1 1 1--------1. 1--------1 1--------1 
1 1-----> I 1-------> \ 1--> I 1 
1 1 I 1 I 1 1 1 
1--------1 1 1 \ 1 1 1 

, I 1 1 1 I 

I 1 1 I 1 1 
page table 1 1 1 1 1 1 
for user 2 1 1 1 1 1 1 

I 1 ---->1 1 -- > 1 1 

: -------- : : I:: --------: : --------: 
1 1-----> 1 1----
1 1 I \ 
1--------1 1--------1 

After write attempt into copy-an-write page 

Figure 5.4 - Copy-an-write 



- 91 -

that are currently in use (or "sticky"). For each 

shared text segment, a count is kept of the total 

number of processes and the number of loaded (not 

swapped out) processes using the segment. The 

reference count for virtual pages that are part of a 

shared text segment is one, since only one page table 

points to the virtual page. The only other difference 

between text virtual pages and data virtual pages is 

that the text flag will be set in the virtual memory 

map for the page so that the page may not be written, 

even using the copy-on-write mechanism. 

5.3. Physical Memory 

A /6 CPU may have a maximum of 256 pages of real 

memory. This real memory is described by a table of 

structures, the core map, similar to that used to 

describe virtual memory (Figure 5.2). Those physical 

memory pages that exist in the machine, and are not 

used by the kernel, are available for allocation. Free 

memory pages are linked together in a free list. In 

addition, a flag in the structure for each physical 

page indicates whether that page is free or allocated. 

This flag is used when considering which virtual pages 

should be removed from physical memory, since only 

allocated pages need be considered. 



- 92 -

One of the most important functions of the core 

map structure is to accumulate memory usage 

information. Several fields are used to maintain usage 

and modification information for pages. Since page 

usage and modification information is stored by the 

virtual memory hardware in special hardware registers, 

it must be copied to the software-maintained structure 

periodically. This updating function is performed by 

the 'pgstats' procedure, which is called from three 

places in the kernel. pgstats is called before working 

set (Section 5.5) statistics are updated (by 'wscalc'), 

since the working set algorithm uses the page usage 

information. It is also called when, during allocation 

of a memory page, it is determined that a page must be 

unloaded, since the decision as to which page will be 

unloaded is based on the values of the usage and 

modified flags for each page. Finally, pgstats is 

called from the scheduler ('swtch') before switching to 

a new process. This is nec essary because the raw page 

usage information is translated into per process page 

usage statistics by pgstats and any rec e nt refer ences 

to pages should be attributed to the current process, 

no t the next process. 

Several other fields of the core map structure 

are used when moving pages between swap space and 



- 93 -

physical memory. The locked flag is set whenever a 

page is active in an I/O operation (paging, or, 

eventually, raw I/O), and for any pages which must be 

kept in core, such as processes u vectors (and 

eventually profile buffers). The in-transit flag 

indicates that a paging operation is in progress for 

this page. The wanted flag is set when a process 

discovers that a page it needs is being demand paged 

into memory. To best illustrate the use of these 

flags, the procedure for loading and unloading a page 

is described below. 

Load ing a Page 

1. If loaded and in-transit flags are set, set wanted 
flag and wait for page. 

2 . If loaded fl ag not set but real page number is 
non-zero, page is being unloaded~ set loaded flag 
and continue. 

3. Otherwise, allocate a physical page and lock it. 
4 . Link coremap and vmmap together. 
5. Set loaded flag in vmmap. 
6. Set in-transit flag. 
7. Do the I/O. 
8. Clear in-transit flag. 
9. Clear locked flag. 
10. If the wanted flag is set, clear it and wakeup 

anyone waiting. 

Unload a Page 

1 . If locked or in-transit, can't unload. 
2 . Clear loaded flag. 
3. Set in-transit flag. 
4. Do the I/O. 
5. Clear in-transit flag. 1 . d 
6. If loaded flag is set, page has been rec alme ~ 

take no further action. 



- 94 -

7. Free physical page. 
8. Clear real page number in vmmap. 

5.4. Balance Set 

In the swap-based UNIX system, only a small 

number of processes could co-exist in memory, with 

other processes residing in swap space. In the paged 

UNIX system, there is also a limited number of 

processes that may co-exist in memory. The limit is 

determined not by the total sizes of the processes, as 

in the swap-based system, but by the working set sizes 

of the processes. The set of processes whose working 

sets may co-exist in memory is called the balance set. 

Note that in both the swapping and paging systems only 

those processes that are actually using physical memory 

have VARs allocated to them. The concept of a balance 

set is used both in Multics [15] and Tenex [1]. 

The balance set concept was added to UNIX to 

simplify several data management problems. For this 

reason, its use as a schedul ing aid is somewhat 

secondary and has not been fully developed. The 

balance set proved most useful in the manag ement of 

page tables of resident processes and in the collec t ion 

of working set statistics. Since page tables, and i n 

particular sharing of pages, are managed by software , 



- 95 -

it was often necessary to inform several processes that 

the status of a page had changed so that it could 

reload its hardware VARs. The hardware VARs may be 

considered a cache of page tables. If the software­

maintained page tables are changed, the copies in the 

cache (VARs) must be invalidated and updated before 

being used again. This occurs most often with shared 

pages, but also occurs when one process forces a page 

used by another process to be unloaded. 

When the status of a page is changed by a 

process, other users of the page must be notified of 

the change. Notification of a change in page status 

causes the process to reload its hardware virtual 

memory registers with the new information in the 

software data structures. Difficulty occurs when 

attempting to locate all users of a page. The most 

obvious solution is to link together all the processes 

that are using the page. To do this, a separate linked 

list would be needed for each page and each process 

would need 256 links to other processes using the same 

pages. These links would most likely be added to the 

page table in the u vector, making it dangerously large 

(e nough space may not be left for the kernel s tack, 

forcing the size of the u vector to increase t o 2 

pages) . Also, management of these links could become 



- 96 -

quite complex; they would have to be updated every time 

the process is swapped in since they could not be 

changed when it is swapped out. This solution appears 

to be overly complex and expensive in terms of space 

and time. 

The solution chosen was to limit . the number of 

processes that may need to be notified when a page is 

changed. This small number of processes is called the 

balance set, and consists of all the processes that are 

"swapped in" (i.e., the process' u vector is in core). 

The balance set is limited to 24 processes so that each 

process in the balance set may be represented by a bit 

in a word. A word in the virtual memory map for each 

page contains a set bit for every balance set process 

that is using the page. A separate table, 24 elements 

long, contains a pointer to the proc structure for each 

process in the balance set. This makes location of all 

processes using a virtual page straightforward. Note 

that only balance set processes need be notified about 

changes in page status, as they alone have VARs 

allocated that may need to be changed. 

Usage statistics for physical pages are 

maintained for each balance set process. A bit is set 

in a word in the core map structure when a page is 

referenced by a balance set process. Another word 



- 97 -

indicates which processes' working sets the page is a 

member of. 

The swapper has been modified to remove processes 

from the balance set when requested. The core 

allocation routine sets a flag (bsout) when it 

discovers that a process must be removed from the 

balance set. It then awakens the swapper and waits for 

it to signal completion of its job. When awakened, the 

swapper first checks the bsout flag to determine if a 

process must be removed from the balance set. If so, 

it selects a process to remove, using the same criteria 

used in the swapping system. It then wakes up anyone 

waiting for a balance set removal. 

The working set page replacement algorithm used 

in UNIX/24V is based on that proposed for Tenex by 

Radelja [17]. This algorithm was designed to properly 

maintain working sets when shared pages are involved. 

The working set algorithm is invoked once every')" 

Virtual units of process virtual time. 

measured using the interval timer option of 

time is 

t he /6. 

The timer is started when a 

initiated by the exec system call. 

new process image is 

The timer runs only 

when the process is in user mode and is context 



- 98 -

switched between processes. The timer interrupts every 

"'r time units (currently .5 seconds), at which time it 

is reinitialized and the working set algorithm is 

performed. 

The following is a description of the working set 

algorithm. When a physical page is allocated for a 

process, as a result of a demand page or any other 

cause, it is marked as being in the working set of the 

process by setting the appropriate bit in the working 

set word for the physical page. At every working set 

timer interrupt, the following action is taken: if the 

page was referenced by the process, it is added to the 

working set of the process; otherwise, it is removed 

from the process working set. In either case, the 

usage bit is cleared. No pages are removed from memory 

at this time. 

When a physical memory page is needed, and the 

free list is empty, a search is made through th e ~0 re 

map of all e~isting pages. Pages that have neither 

been referenced nor are in the working set of any 

process are available for replacement . Pag~s that have 

no t been modified are chosen first. If the pag e has 

been modified, it is written out to swap space. No 

attempt is made to further discriminate between pages 

that satisfy the above constraints. If no such pag e 



- 99 -

can be found, a process is removed from the balance set 

and swapped out. 

Removing a process from the balance set involves 

several housekeeping chores. First, all pages used 

only by the process are unloaded. Swapping out a 

process guarantees that at least one page of physical 

memory will be freed; that one page is the process u 

vector. If 

with other 

all other pages of the process are shared 

processes, they will not be unloaded. 

Another housekeeping chore involves removing all 

references to the balance set process being swapped 

out. The appropriate usage and working set bits must 

be cleared in the virtual memory map and core map 

structures for all pages the process has used. 

Note that when the p~ocess is swapped out, all 

information about which pages were in its working set 

is lost. The only working set information kept is the 

size of the working set. The working set size is 

computed by the sureg procedure, which loads the 

hardware VARs from the information in the page table. 

Sureg counts the number of memory re s id en t pages the 

process is using and stores this number as the process ' 

working set size. All scheduling decisions that wer e 

previously based on the total size of the process now 

use the working set ~ i ze. 



- 100 -

The working set size of a process is very 

important when considering whether or not to swap in 

the process. If there are not enough free memory pages 

to contain the working set and the u vector of the 

process, it is not swapped in. Note that shared pages, 

and most importantly shared text segments, are not 

accounted for. It is possible that there would be more 

than enough pages for the process if it used many 

shared pages that were alr~ady in memory. This is one 

area of the scheduler that requires further research. 



CHAPTER VI 

CONCLUSIONS AND FURTHER WORK 

6.1 . Conclusions 

The work described herein has shown that it is 

possible to port the UNIX operating system to the 

Harris /6 minicomputer, which is vastly different from 

any other computer to which UNIX has been ported. The 

UNIX operating system, and most of the UNIX 

environment, has proved to be extremely portable. In 

addition, UNIX proved to be an excellent base on which 

to build a demand paged operating system. The demand 

paging extensions to UNIX were easily added with very 

little effect on other unrelated portions of the UNIX 

kernel. The resulting system combines the 

functionality of UNIX with the advantages of a virtual 

memory environment, providing an exceptionally powerful 

and usable environment. 

The UNIX/24V environment, at both the command 

level and programming level, is quite compatible with 

other implementations of UNIX. However, due to the 

architecture of the /6 and the resulting implementation 

of C, the programmer is "encouraged" to program in a 

- 101 -



- 102 -

more strict and portable style. This has both 

advantages and disadvantages. The advantages of 

portability should be obvious at this point. The 

disadvantages are more difficult to specify and usually 

consist of certain beliefs or prejudices of the 

programmer. Many programmers believe that it is 

necessary to know what kind of machine they are 

programming on, so that they can write more efficient 

code. This code they believe to be efficient is often 

highly machine dependent. In many cases, such code can 

be replaced by equally efficient code that is also 

portable. However, there are situations in which it is 

desirable to know something of the underlying system. 

For instance, see the many papers on programming in a 

virtual memory environment [2] [5]. Such programming 

considerations often have ~ n impact only on efficiency 

without jeopardizing portability. 

The current implementation is by no means 

complete. The 

"seat of the 

performance of the system is poor. A 

pants" comparison indicates that 

performance, as indicated by the time required for the 

system to complete a task with no other load on t he 

system, is worse on the /6 than on a smaller PDP-l l / 34 

system. Also, the performance difference between the 

swapped and paged versions of the system is no t 



- 103 -

significant. Timing tests with the C compiler showed a 

decrease of less than 10% in real time with a similar 

increase in system time when compiling the same small 

program on the paged system instead of the swapped 

system. 

During an early stage of the system development 

(before the paged system) some performance monitoring 

of the kernel was performed in an attempt to pinpoint 

the slowness in the system. The I/O statistics feature 

was installed to verify that the disk was performing 

properly. All data indicated that disk transfer rates 

and seek times were as expected. The interval timer 

was also used to monitor the kernel by sampling the PC 

periodically. It was found that most of the kernel's 

time was spent in three routines; idle, csv, and cret; 

as was expected. In addition, the routine bcopy was 

seen to occupy a 

Bcopy is used to copy 

buffers. Bcopy was 

large amount of the kernel's time. 

bytes, usually between kernel 

changed to copy double words 

instead of bytes, if possible. This reduced the time 

spent in bcopy, but did not significantly improve 

system performance. It seemed that no one area of the 

system was at fault, making performance analysis of the 

system much more difficult. 



- 104 -

6.2~ Current Limitations 

In addition to the unsupported features listed in 

Section 4.10, there are several limitations of the 

current implementation of the system. The most 

important limitation is that processes can not be 

larger than 64K words. This limitation is really a 

limitation of the C compiler. The C compiler does not 

always generate correct code for references through 

pointers that point above 64K, see [12] for complete 

details. Because of this, the kernel support for 

processes larger than 64K words was never completed or 

tested. The only known problem area is the 

initialization of the user's stack pointer; it should 

be initialized in LAC format instead of DAC format. 

This could be done either by the kernel or by the C 

runtime startup procedure (crt0.s). 

Another limitation is that the kernel contains no 

support for floating point. Although space is reserved 

in the u vector to save floating point registers and 

status, the calls to procedures savefp and restfp have 

been ifdef'ed out. These procedures must be added to 

the machine language assist, mch.s. In theory, adding 

these routines should be straightforward. The only 

anticipated problem is that it is possible, when 

restoring the floating point condition codes, to lock 



- 105 -

up the SAU and eventually the entire /6. This problem 

is documented in the Vulcan source code and is 

concerned with the ordering of instructions to restore 

floating point condition codes and enable SAU 

interrupts. 

6.3. Further Work 

This section presents some areas for further 

research that may help improve the performance of the 

system. Performance improvements fall into two 

catagories: those that will improve the overall 

performance of the system, and those that will improve 

the performance of the system under heavy load. 

As was mentioned in Section 6.1, no particular 

part of the system was found to be consuming an 

inordinate amount of the kernel's time. The reason for 

this is not clear. To some extent, the C compiler may 

be at fault. From examination of the code produced by 

the C compiler, an estimated 10-20% improvement is 

possible by adding a simple peephole optimizer. Also, 

several operations such as character pointer arithmetic 

and character string indexing that were cheap on the 

PDP-II are quite expensive on the /6. Since charac t ers 

are often used to contain flags for kernel dat a 

structures, this may be one source of unneed ed 



- 106 -

overhead. Changing such flags from characters to 

integers would result in a slight increase in data 

structure sizes but may also decrease code size and 

execution time. 

As was mentioned previously, there may be some 

justification for reevaluating the .choice of block 

size. Analysis may indicate that performance 

improvements would result from using a block size equal 

to the hardware supported sector size. The impact of 

this change may be quite extensive and should be 

carefully investigated. On the other hand, several 

functional improvements may be realized by increasing 

the block size from half a page to a whole page. This 

would allow the implementation of extensions to the 

file system services that would permit a process to map 

a page of a file directly into its address space, as is 

done in Tenex. 

The area requiring the most work is the part of 

the system added to support demand paging. The paging 

system should be instrumented to determine how to 

adjust the parameters of the working se~ algorithm. 

The possibility of keeping track of the working set 

when the process is swapped out, so that it may be 

preloaded when the process is swapped in, should be 

. d The performance of the modified investlgate • 



- 107 -

scheduler working as a balance set scheduler should be 

measured. A complete rewrite of the scheduler may be 

necessary so that the balance set concept is handled 

more naturally and effectively. In particular, the 

swap-in decision could be based on more accurate 

information about shared pages. 



REFERENCES 

[1] Bobrow, D. G., J. D. Burchfie1, D. L. Murphy, and 
R. S. Tomlinson, "TENEX: a Paged Time Sharing 
System for the PDP-1~," CACM, Vol. 15 (March 
1972) , pp. 135 - 143. 

[ 2] Brawn, B. 
Behavior 
Conference 
Conference, 

S., and F. G. Gustavson, "Program 
in a Paging Environment," AFIPS 
Proceedings, Fall Joint Compute r 
Vo 1. 33 (1968), pp. 1 ~ 19 - 1 ~ 3 2. 

[3] Denning, P. J., "Working Sets Past and Present," 
IEEE Transactions on Software Engineering, Vol. 6, 
No.1 (January 19813), pp. 64 - 84. 

[4] Gingell, R. A., "CWRU/Dmacp Control," internal 
memorandum, A. R. Jennings Computing Center, Case 
Western Reserve University, Cleveland, Ohio, 
February 19813. 

[5] Guertin, R. L., "Programming in a Paging 
Environment," Datamation, Vol. 18, No.2 (February 
1972), pp. 48 - 55. 

[6] Harris Corporation, "Reference Manual 
Digital Computer," Sept. 1976. 

Slash 6 

[7] Harris Corporation, "Series 6130 Peripheral Device 
Programming Considerations," July 1975. 

[ 8] 

[ 9] 

[10] 

Harris Corporation, "Universal Block Controller 
(UBC) Input/Output Channel," Sept. 1978. 

Harris Corporation, "Series 84~13 Direct Memory 
Access Communications Processor (DMACP)," August 
1978. 

John son, S. C. , and D. M. Ritchie, "Portab i l i ty of 
C Programs and the UNIX System," Bell System 
Technical Journal, Vol. 57, No.6, Part 2 (July 
August 1978), pp. 2021 - 2048. 

[11] Kernighan, B. W., and D. 
The C Programming Language, 
Englewooa Cliffs, New Jersey, 1978. 

M. Ri tchie, 
Prentice-Hall , 

- 108 -



[12 ] 

- 109 -

Leffler, S. J., "An Implementation 
Programming Language for the 
Minicomputer," Case Western Reserve 
Cleveland, Ohio, forthcoming Master's 

of the C 
Harris /6 
University, 

Thesis. 

{13] London, T. B., and J. F. Reiser, "A UNIX Operating 
System for the DEC VAX-ll/780 Computer," Bell 
Laboratories Technical Memorandum 78-1353-4, July 
7, 1978. 

[14] Miller, R., "UNIX - A Portable Operating System?," 
Australian Universities Computing Science Seminar, 
February, 1978. 

[15] Organick, E. I., The Multics System: An 
MIT---Press-; 

[16 ] 

[17] 

[18 ] 

[19] 

[20 ] 

[21] 

Examination of Its Structure~ 
Cambridge, Massachusetts,-r972.---

Parmelee, R. D., T. 1. Peterson, C. C. Tillman, 
and D. J. Hatfield, "Virtual Storage and Virtual 
Machine Concepts," IBM Syst. J., No.2, 1972, pp. 
99 - 130. 

Radelja, M. A., "A Performance Study of the TENEX 
Operating System's Pager Module," Case Western 
Reserve University, Cleveland, Ohio, Phd. Thesis, 
Aug. 1976. 

Ritchie, D. M., "A Retrospective," Bell System 
Technical Journal, Vol. 57, No.6, Part 2 (July -
August 1978), pp. 1947 - 19713. 

Ritchie, D. M., S. C. Johnson, M. E. Lesk, and B. 
W. Kernighan, "The C Programming Language," Bell 
System Technical Journal, Vol. 57, No.6, Part 2 
(July - August 1978), pp. 1991 - 21320. 

Ritchie, D. M., and K. Thompson, "The UNIX Time­
Sharing System," Bell System Technical Journal, 
Vol. 57, No.6, Part 2 (July - August 1978), pp. 
1905 - 19313. 

Rose C. W., "CWRUnet: The Case Western Reserve 
univ~rsity Distributed Minicomputer Network," Case 
Western Reserve University, Department of 
Computing and Information Sciences, 1975. 

[22] UNIX programmer's Manual, Vol. 1 & 2, Seventh 
Edition, January 1979. 



APPENDIX A 

SYSTEM INSTALLATION 

UNIX/24V currently runs on the Wickenden TSA 

system. The system is booted from tape with the file 

system residing on the 300MB disk. The 300MB disk pack 

is divided into three logical areas for use by UNIX; 

see the disk device driver for the details of this 

division. The first area is used for the root file 

system, the second area is used for swap space, and the 

third area is a mounted file system containing all the 

system sources and is mounted on directory /usr. These 

three areas cover only half of the 300MB disk; the last 

area is nowhere near full. 

The directory structure on the /usr file system 

is identical to that on the standard Version 7 

distribution tape. The sources for the system kernel 

are in /usr/sys; the makefile in /usr/sys/conf will 

rebuild the system. To make a new boot tape the 

command file 'wrtape' is used. After rebuilding the 

system, mount a tape on the tape drive and type "wrtape 

unix". This will cause a new boot tape to be written 

containing the new system. Once debugged, the new 

system should be copied to /unix so that programs tha t 

- 110 -



- III -

depend on the system namelist will work properly. 

To build and move a UNIX/24V system to another /6 

is somewhat more difficult. Compared to the PDP-II, 

there seems to be much less standardization on the 

channel/unit numbers and interrupt levels for devices 

on the /6. There are two main problems encountered 

when moving to another /6. The first problem is moving 

the file system. 

disk drive, the 

If the destination system has a 300MB 

disk pack could be moved directly. 

Most likely this will not be the case. The method used 

in the past has been to use a subset of the standalone 

support programs to move an image copy of the root file 

system. The program bcopy (in /usr/src/cmd/standalone) 

is a standalone program to copy a file system image 

from tape to disk. Bcopy must be linked with the 

appropriate disk driver and tape driver containing the 

propet channel/unit numbers for the destination system. 

The program maketape is used to write bcopy out to 

tape. The root file system image can be copied to tape 

after bcopy, or copied to another tape. Following is 

an example command sequence to accomplish this: 



- 112 -

<build new bcopy> 
% maketape mtboot bcopy 
% dd if=/dev/rp0 of=/dev/mt0 count=4845 
4845+0 blocks in 
4845+0 blocks out 

<mount tape and scratch disk on destination machine> 
<use ROM bootstrap to boot from tape> 
Input: mt(0,1) 
Output: rp(0,0) 
Count: 4845 
<this will copy the root file system to the new disk> 

The next problem involves building a UNIX kernel 

for the destination machine. Device definitions must 

be added to or removed from l.s and c.c in 

/usr/sys/conf as appropriate. Channel/unit numbers and 

interrupt levels may also need to be changed. Some 

opportunity exists for changing these as the system is 

booted. Before booting, raise sense switch 1; this 

will cause the system to halt after being loaded into 

memory. The device definition blocks in l.s can be 

patched in core with the new channel/unit numbers and 

interrupt levels, and the system can be restarted at 

location 040. Dur ing this process it will be 

convenient to have a copy of the namelist for the 

system being booted, as obtained from 
, 

nm . 

While running in single user mode, the /usr fi le 

system can be restored from a standard dump or t ar 

tape. Only four devices are needed for single user 

operation: the console terminal, the disk containing 



- 113 -

the root file system, a magtape drive, and the line 

clock. Once the /usr file system is restored, a new 

system can be configured with device drivers for any 

other devices available on the system. 

There are several things that could be done to 

simplify the task of moving UNIX to another /6. 

1. A standard boot program (as on the PDP-II) that 
knows about all devices and file systems, would 
simplify booting UNIX and standalone programs. 

2. A 'mkconf' program for the /6 would 
task of preparing configurations 
descriptions. 

simplify the 
from machine 

3. Standalone versions of mkfs and restor would allow 
the preparation of a standard release tape, as for 
PDP-II UNIX. 

4. The process of patching configuration tables when 
the system is booted could be simplified by adding 
a configuration dialog module to the system. This 
module would be invoked as a sense switch option 
when the system is booted and would allow the user 
to specify the channel/unit numbers and interrupt 
levels for all devices known to the system. After 
the configuration tables are modified, the system 
would come up as normal. This module could be 
overlayed (somehow) or removed from a production 
system. 



APPENDIX B 

CONSOLE TERMINAL MODIFICATION 

Harris packages all /6 systems with a TEC model 

455 terminal for use as the console terminal. The TEC 

terminal is a block-transmit, upper-case only terminal 

that is interfaced via a twisted pair differential 

interface. Since UNIX prefers character-transmit, 

lower-case terminals, it was desirable to replace the 

TEC. None of the terminals available to us were 

equipped 

the TEC 

with differential-type interfaces. 

terminals were equipped with a 

However, 

special 

interface circu i t that converted the differential 

signals into TTL level signals for use by the terminal. 

In addition, the DECwriter II that was to be used for 

the console could be interfaced via TTL level signals. 

Therefore , the solution was to use the differential 

interface coming out of the /6, convert it to TTL using 

the board in the TEC terminal, and connect it to the 

DECwriter. The wi ring betwe en the TTL conversio n boa rd 

connector and the DECwriter connector is as follows: 

- 114 -



TEC 
Jl 

9 ------------) 
10 <------------

7 <-----------) 

- 115 -

DECwriter 
J4 

2 
4 
1 gnd 

In addition to the above change, it is also 

necessary to change the baud rate of the /6 interface 

from 9600 baud to 300 baud for use with the DECwriter. 

This change is easily accomplished by changing DIP 

switches on the interface board; consult the 

appropriate Harris documentation. 



This digital copy was produced by the Case Western Reserve University Archives in 2020. 
 
Original documents from the University Archives were scanned at 300 ppi in black and white or 
grayscale or color. Blank pages were not scanned. The images were OCR’d using Adobe 
Acrobat X.  
 

 
 

Please send questions or comments to 
University Archives 

Case Western Reserve University 
archives@case.edu 

216-368-3320 
 
 
 
 

Warning Concerning Copyright Restrictions 
The Copyright Law of the United States governs the making of photocopies or other 
reproductions of copyrighted material. Under certain conditions specified in the Law, libraries 
and archives are authorized to furnish a photocopy of other reproduction. One of these specified 
conditions is that the photocopy or other reproduction is not to be “used for any purpose other 
than private study, scholarship, or research.” If a user makes a request for, or later uses, a 
photocopy or other reproduction for purposes in excess of “Fair Use,” that user may be liable for 
copyright infringement 

 
 
 


	ShannonThesis_pp1-48
	05831D1p049-115.pdf

