-

-

Heinz Lycklama
UNIX Technology Advisor, 1988-89 'mmmm——

NIVAS

b

TECHNOLOGY ADVISOR

NETWORKING

New Solution Recreates
Old Problem .

By Rob Gurwitz

Remember the days of time-sharing a PDP-11 or
VAX-based UNIX system with ten or twenty other us-
ers? Invariably, at times of peak load, system response
would slow to a crawl or the system would crash. People
would congregate in hallways, taking an enforced coffee
break because “the system was down”.

At many sites, the advent of single-user worksta-
tions has changed that picture. No longer is a whole de-
partment dependent on a single timeshared machine
withitsload bottlenecks and single points of failure. The
decentralization of computing resources concentrated
more power in the hands of individual users and allowed
more flexibility and insulation from hardware failures.

Add to that the advantages of large, bitmapped
displays with the ability to support multiple windows on
screen, and the result is a true revolution in individual
productivity.

New System Demands

Of course this revolution has come with its own
costs: new demands for fast communication, the need to
share decentralized data, and the increased administra-
tive burden of maintaining multiple machines where
one served before. These needs have increased the
burden on the operating system to provide transparent
data sharing through new mechanisms. Distributed file
systems, of which Sun’s Network File Systemis the most
widely used example in the UNIX community, extend
the concepts of centralized file management of timeshar-
ing days to a networked system of workstations.

With NFS, filesystems, sections of the UNIX file
naming hierarchy associated with a logical partition of
a disk, can be shared by multiple workstations on a
network. An NFS client workstation can “mount” a

filesystem which physically resides on an NFS server
workstation disk and make the filesystem part of its
local naming tree.

The “mount” mechanism for remote filesystems is
analogous to the UNIX mechanism for associating
filesystems on local disks with a naming hierarchy.
Files mounted remotely in this way are then accessible
through normal UNIX commands, just asif they were on
a physical disk attached directly to the workstation.
This type of access is known as “transparent”, since no
special commands are needed to access the remote files
once the filesystem is mounted.

How “Transparent Access” Works

The system calls which normal UNIX file commands
(cat, ls, etc.) issue are converted in the UNIX kernel to
corresponding operations across the network to the
server system where they physically reside. A write
system call on a remote file gets translated to a remote
write operation directed at a process on the server
system which actually does a write to the file on its disk.
For performance sake, many operations such as reads
and writes are not issued one-to-one for every client
system call, but the concept is the same.

The distributed file system is only really transpar-
ent to the user if the performance of remote access is
comparable — it doesn’t have to be equal — to local
access, and if the server machine where the files are
located is operating correctly. The decentralization of
the file’s users (clients) from the machine where it
physically resides (the server) opens up more possibili-

(over, please)

ALSO IN THIS ISSUE ...

OPERATING SYSTEMS.ccommmmennnnnnns 5
INDUSTRY FORUMc.ccomcmunnnnnnanannnns e 8
SECURITYcsccnsiiivmnssnsinsusssssssnsnsanin 11
INTERNATIONALIZATION.......coore000ee0e 15
STANDARDSccccccunemnmnanussussasssnsnnss 18
USER INTERFACEc.ccoommmmnnnnnnnnnanns 21

e B e e

2

ties for error than when the client and server are the
same machine.

In the old timesharing model, the disk could
generate an error, or the CPU could crash due to a
hardware or software error, but aside from those occur-
rences a file operation was pretty safe. It either worked,
or, in the odd crash, it didn’t.

In the new model, the possibilities for failure are
multiplied and the failure modes are more complex.
Instead of one system, at least two are involved, with a
network and a lot of complex software in between. If any
link in the chain fails, the operation fails.

With a network and many machines involved, the
failures can be frequent and they can be transitory.
Even worse, as we shall see, the failure of one system can
adversely affect another, even if it is not directly the
client in a particular operation.

If At First

In NFS, for example, the requirements for maintain-
ing the communications context (e.g., which files are
open, what machines they are located on, how to commu-
nicate with those machines, etc.) of the distributed file
system are the client system’s responsibility. The server
system is only responsible for completing the individual
file operations coming in over the network. The server
maintains no state about the remote clients of a file.

The implication of this scheme is that the client is
responsible for retrying an operation if the server does
not respond when overloaded or down. This simplifies
the design of the server software, but it also affects the
error handling strategies on the client and can result in
problems for the user. Note that there are other ways to
build distributed file systems that place more responsi-
bility on the server. But because of the distributed
nature of the system, there are always more chances for
errors if the file is remote than if it is local.

With NFS, there are two ways of dealing with server
failures. Either the client can retry an operation some
number of times and then give up, or it can continue
retrying indefinitely, making the command in question
hanguntil itis interrupted by the user or until the server
is again available to handle the operation. The infinite
retry strategy may seem excessive at first, but imagine
running a long, expensive job. Do you really want it to
bomb out halfway through its run just because the
server crashed and was unavailable for a short time?

For Example ...

My organization uses UNIX workstations as our
main computing resource. We have about 30 networked
together, plus five large file servers with a total of over

10 Gbytes of storage. Every engineer has a workstation
(continued, p. 4)

THE UNIX TECHNOLOGY ADVISOR

EDITORIAL BOARD

Chairman of the Board

Dr. Heinz Lyckiama, Senior Vice President,
Technology, INTERACTIVE Systems Corporation;
Board member, /usr/group

Larry Crume, President, AT&T Unix Asia/Pacific

~ Dr. T. A. Dolotta, President, SOFTBANK America

Inc.

Dr. Ira Goldstein, Vice President, Research and
Advanced Development, Open Software Foundation

Allen Hankinson, Chief, Systems and Software
Technology Division, National Institute for Standards
and Technology

James Isaak, POSIX Strategy Director, Digital
Equipment Corporation

James H. Knowles, Director, UNIX Systems
Laboratory, AT&T

Ron Lachman, President, Lachman Associates
Michael Lambert, Chief Technical Officer, X/Open

Dr. Alan G. Nemeth, President, usenix; Corporate
Consultant, Prime Computer

Ben Salama, Chairman, /usr/group/UK; Associate
Director, Data Logic

%‘MCharlas Sauer, Senior Technical Staff Member,

Robert Scheifler, Director, MIT X Consortium,
Massachusetts Institute of Technology

Michael Tilson, President, HCR Corporation

Myron Zimmerman, President, VenturCom, Inc.

The UNIX Technology Advisor is published monthly
by MYOB, Inc. It is a publication dedicated to the
needs of technical managers working in the UNIX/
open systems environment. POSTMASTER: please
send address changes to The UNIX Technology
Advisor, POB 955, Hollis, NH 03049. Entire contents
copyright 1989 by MYOB, Inc., unless otherwise
noted. All rights reserved; no materials may be
reproduced in whole or in part without prior written
permission from The UNIX Technology Advisor. Sub-
scriptions to the Advisor are available in the United
States for US$295 per year. Correspondence on
editorial or circulation matters should be sent to POB
955, Hollis, NH 03049. Telephone: (603)465-7825.
Letters to The UNIX Technology Advisor become the
property of the newsletter, are assumed intended for
publication, and may be used by the editors as
newletter matter. Letters should include writer’s full
name, affiliation and telephone number. Letters may
be edited to meet space or clarity requirements.
Statements of fact and opinions expressed by colum-
nists and writers are their own, and are not necessar-
ily those of The UNIX Technologx Advisor. UNIXis a
reé;istered trademark of AT&T; The UNIX Technology
Advisor is not affiliated with AT&T.

—

MARCH, 1989

s s cse e e s sas s e e e s s]

WELCOME TO THE UNIX TECHNOLOGY ADVISOR

By H. Brewster Maule, Publisher

The scene is set for a revolution in computer tech-
nology. Companies are moving to integrate their
systems across mainframes, minis and micros; open
systems technology is the promise that makes it
possible.

Ifyou’re a technical manager for a vendor or end-
user, youre facing a critical juncture. Whether
you’re deeply involved in UNIX/open systems is-
sues, or on the threshold of converting, you must
commit to strategies that are costly.in time and
effort in spite of the fact that there are no clear-cut
technical answers or directions.

The Advisor is intended to help you make the
best of an uncertain situation. It will keep you up to
date on developments you should be aware of when
making decisions you have to live with.

It will feature 12 columns (listed below) that will
provide close coverage of technical development
efforts and a focus for commentary on, and analysis
of, key technical issues facing the industry.

The distinguishing features of columns will be
theirnarrowfocus and the fact that contributions for
each will be written by up to four different technical
people. The writers work in the industry, as opposed
to following events the way reporters do.

The Advisor will also feature articles by techni-
cal people on topics not regularly addressed in col-
umns. Some will be written in response to material
that has appeared in an issue. If you feel strongly
about material you see here— and we expect you to!
— your comments are certainly welcome. They may
even reach a wide audience by appearing as articles!

Itrust you’ll find The UNIX Technology Advisor
a thought-provoking and extremely useful aid in
your daily work. I look forward to serving your
technical information needs for a long time.

By Dr. Heinz Lycklama, Chairman,
Editorial Board

When I was first approached by the publishers
to participate in The UNIX Technology Advisor, I
was immediately struck by two things: first, how
controversial such a newsletter would probably be;
second, how useful. :

In the first meeting of the Editorial Board, we
talked about the issue of controversial opinions —
the “religious fervor” that’s apparent in the UNIX/
open systems community.

The technical people I know aren’t shy about ex-
pressing their opinions on technical issues and prob-
lems. And they’re likely to disagree with each other
— sometimes loudly — on the best ways to proceed.

The factor they have most in common is that
they’re all well worth listening to. They have faced,
imaginatively and effectively, the thorny technical
issues that concern us all. Their opinions are valu-
able because they've considered them deeply and
intelligently.

So the guidance you’ll find in the Advisor is
uniquely useful. It comes from professionals who
work on the leading edge of technical developments,
technical managers who are deeply committed to
solving the complex problems that abound in the
UNIX/open systems environment.

I've found my own involvement in the Advisor
has been rewarding on both the professional and
personal levels. Professionally, it opens another
pipeline to the best thinking in the field. Personally,
Ifind the other Board members and the columnists
to be stimulating and entertaining as well as infor-
mative.

I believe the Advisor will become a significant
force in the ongoing UNIX/open systems debate. I
trust you'll find it as useful and provocative as I do.

e s e e e T e e

Column Topics:
Academic R&D ¢ Applications * Communications, Interoperability,
Networking ¢ Industry forums ¢ Internationalization ¢ Languages/
Software Development Tools ¢ Mail - Operating Systems, Architecture,
. Hardware ¢ Security * System Administration ¢ Standards ¢ User
" Interface, Graphics

4

THE UNIX TECHNOLOGY ADVISOR

(NETWORKING, continued from p. 2)

on his desk, with systems ranging from Sun 3/52s with
4 Mbytes of main memory and small 70-140 Mbyte SCSI
disks for local storage, to Sun 3/260s with up to 32
Mbytes of main memory and lots of disk, which are used
as file servers.

Our network also includes a number of Stellar
(GS1000s, very high performance graphics workstations
with 16-128 Mbytes of main memory and lots of disk. All
the systems are tied together over Ethernet and use NFS
for file sharing.

In our setup, private user directories are scattered
across both individual workstations and servers. The
public directories (/public/bin, ete.) are all located on
the servers. For every workstation to be able to access
all the files, each must mount 50-80 filesystems across
the network.

NFS requires that every filesystem on a server be
mounted separately by the client in order to access all
the server’s files. In practice, however, only a subset of
a server’s files are mounted by every client. Just keeping
track of the mount tables on 30+ workstations is an
administrative nightmare.

To alleviate the administrative burden, Sun has re-
cently introduced a system which automatically mounts
remote filesystems on a client the first time they are
referenced. Thus, if I want to access a filein /usron a
workstation named leo, I can refer to it through the
directory named /net/leo/usr, which the system auto-
matically mounts for me the first time through.

Toprevent clogging a system with too many mounts,
filesystems accessed in this way are automatically
unmounted after a time if they are not in use. This
scheme simplifies setting up the sharing, but here’s
where the problems start.

What Do You Take In Your Coffee?
Say I have a number of systems mounted for me in
my /net directory. When I list the files in /ne? I get:

altair astral bacall mercury vulcan

Each entry in the /net directory corresponds to the
root file system of a workstation in the system. If one of
these machines happens to crash, say altair, and I have
the system set to continuously retry operations on the
files if the server doesn’t respond, then a seemingly
benign operation like a pwd in a directory on a machine
that is still up, say /net/mercury/usr/rfg, can hang.
Why should this happen, since mercury is up and it’s the
seemingly uninvolved server altair that’s down?

The answer can be seen in the algorithm for pwd,
which tries to find the name of the current directory by
successively backtracking up the naming hierarchy.

pwd is trying to find the names of each directory compo-
nent in the current directory pathname by starting at
the current directory and looking for its entry in the
parent directory. It does this by comparing the UNIX
internalfileids (dev, which identifies the filesystem, and
ino, which identifies the file in that filesystem) kept for
each entry in the parent directory with that of the
current directory. When it finds the right entry it saves
the name of the entry, goes up one level, and repeats
until it finds the root.

If the parent and child directories at any step are in
the same filesystem, all we need do is compare inos
which are kept in the parent directory entry to find the
name of the child. If they are in different file systems,
then we need to find both the ino and the dev, which is
not kept in the parent directory entry. To get the dev, we
do a stat operation on the file named in the entry.

Back To The Future

This is where a problem arises, since if the entry cor-
responds to another remotely mounted directory, as it
would for theentriesin /net, then we end up going across
thenettodothestat. If, while looking for the entry which
corresponds to our current directory path, we encounter
a machine that is down, the command hangs — even
though we aren’t directly doing an operation on the down
server.

This unfortunate side effect is just one example of
how file sharing across a distributed filesystem like NF'S
can actually appear more like the centralized model of
timesharing days. Here, even though both client and
server are operating normally, the interaction of an-
other server can cause operations to hang. Of course,
there are solutions to this particular problem, but often
the solutions require more complex operating system
software mechanisms to get around the glitches.

A Complex Alternative

Forexample, one way of gettting around the depend-
ence on individual server reliability to ensure availabil-
ity of critical shared files is to replicate the files on
multiple servers. Other distributed systems, like Locus,
take this approach. If files are maintained on multiple
servers, then if one goes down, others are still available
to service requests. Such systems can automatically
switch between servers to handle requests if one goes
down.

The added complexity arises in trying to keep the
replicated copies up to date, so that changes to a file on
one server are propagated to the other servers for the
file. Replication can greatly increase the robustness of
a distributed filesystem and prevent occurrences like
the one we saw above. But it does so at a cost in
complexity and size of system software.

I

MARCH, 1989

5

R e e

This increase in complexity and size can have severe
implications for the size and usability of computers. Sun
hasrecently released version 4.0 of its operating system.
The new release is chock full of new features, like the
automount facility, dynamic linking, etc. Its size is
about 700 Kbytes, compared with about 600 Kbytes for
an older 3.2 version of the OS.

We currently run Sun OS 4.0 on a number of Sun 3/
52 workstations, which are limited to 4 MBytes of main
memory. These workstations can barely run the X
window system as a multiwindow bitmapped terminal
with the real computz activities (compiles, edits, etc.)
taking place on machines with more memory and more
compute power. With the new, larger, more complex
system software, these six thousand dollar workstations
perform worse than the two thousand dollar X terminals
which we have just begun to use.

Yet Another Twist

TheXterminalisaclevertwist. Itis a M68000based
bitmapped terminal, with a mouse, ethernet interface
and enough memory and power to run the X window
system. It can support multiple X windows running over

the network to jobs running on server machines that do
thereal work. The resultisalow cost system with many
of the advantages of workstations, multiwindow,
bitmapped displays, but with little or no local compute
power. X terminals bring us closer to the time sharing
model, but give the flexibility of having jobs in different
windows run on different servers. In other words,
timesharing with a twist.

Conclusion

The moral of this tale is that as systems become
more powerful and memory becomes more available, the
functions expected of them and hence the software
needed to run them become larger and more complex.
This new world of functionality and performance comes
at a cost.

We should be careful in designing, buying, and using
these systems to make sure we don’t take a giant step
backwards to the days of the long, enforced coffee break!

Rob Gurwitz, Director Communications and
Distributed Processing, Stellar Computer Inc.

R e e e

OPERATING SYSTEMS

What’s Real With Real
Time UNIX Systems?

By Dr. Myron Zimmerman and
Naren Nachiappan

Many remarkable features and traits have been at-
tributed to the UNIX system. One is its uncanny knack
for appearing in situations for which it was never in-
tended. An extreme example of thisis the system in the
real time world. Standard UNIX systems emphasize
multi-user time sharing and averaged performance,
while real time is at the opposite end of the spectrum
where deterministic response and time-critical perform-
ance are paramount.

The UNIX system first reared its head in the real
time world in the mid to late seventies in instrumenta-
tion control and acquisition applications at academic
laboratories; it has appeared recently with increasing
regularity in the industrial automation and instrumen-
tation markets.

Strategies and techniques for adapting UNIX sys-
tems to the real time world have advanced since those
early days, resulting in a bounding and improvement of
system response times, and the addition of many real

time functions without fundamental change. This
column will examine developments in this area, looking
first at the system’s notoriously poor context switch
latency. Future columns will focus on issues such as
scheduling algorithms, contiguous file systems, asyn-
chronous I/O, memory management and locking, event
handlers, networking, and POSIX 1003.4 standards.
Unless noted otherwise, performance figures presented
in this column are based upon UNIX System V Release
3.0 running on a 16 MHz Compaq DeskPro 80386 with
a 80387 floating point co-processor and 4 MB of 80 ns
memory.

Overview Of Context Switch Latency

Responsiveness of systems to the external world can
be critical. For example, if in a chemical processing
plant a sensor on a mixing tank indicates that the tank
is full, then shutting off the pump with a 1 or 100
millisecond accuracy can represent the difference of a
tablespoon or almost a gallon on a 500 gallon per minute
pump. Orifdataisarriving at 9600 baud over a RS-232
connection, then a system has about 1 millisecond to
analyze each character of data before the next character
arrives. There are endless examples of time-critical
applications in the general communication, command,
control, and acquisition areas.

One of the most commonly used performance met-
rics of a real time operating system’s responsiveness is
its context switch latency (CSL). The CSL is generally

T e B R e e

6

THE UNIX TECHNOLOGY ADVISOR

defined as the time interval between the generation of
an interrupt by a hardware device and the execution of
the first instruction of a specified user process.

Please note that the CSL is more than just the inter-
rupt latency. The interrupt latency is the initial part of
the CSL and is defined as the time interval between
interrupt and execution of the first instruction of a
kernel device driver. As an aside, the interrupt latency
of standard UNIX systems is reasonable (minimum: 50
microseconds; average: 55 microseconds; worst case: 150
microseconds) if the port uses correct interrupt priori-
ties and device drivers do not excessively lock out inter-
rupts (a frequent problem during device error recovery
and timing loops — the worst case of 150 microseconds
quoted above was due to timing loops in the floppy disk
driver). In fact, the early use of UNIX systems in real
time applications was to implement the real time proc-
ess as a device driver.

The CSL is made up of fixed and variable compo-
nents. The fixed components are the same each time
and include general interrupt handling overhead, ker-
nel overhead in determining the appropriate process to
execute, saving the current context and restoring the
context of the target process including machine, floating
point, and virtual memory registers.

These fixed components should not vary dramati-
cally between different operating systems (assuming
similar models of a process context) and are about 400
microseconds for standard UNIX systems. Note that
some real time executives achieve much better times by
using a different process model and providing only bare-
bone system services, somewhat more akin to a UNIX
kernel device driver.

Variable components of the CSL do vary signifi-
cantly between different operating systems. Real time
systems have a total CSL (adding all fixed and variable
components together) which ranges between the fixed
CSL and some reasonable upper limit or worst case. On
the other hand, standard UNIX systems have an
unbounded worst case CSL, often exceed 100 millisec-
onds, and are known to approach one second in some
cases!

Non-Preemptable UNIX Kernel

Why does the UNIX system have an unbounded
CSL? The simple answer is that the standard kernel is
not preemptable. Preemption means to immediately
stop the current activity or processing and switch to
some different new activity. The early designers chose to
implement a non-preemptive kernel because it signifi-
cantly simplified the kernel code and design, allowing
them to focus on other advanced system features and
design.

The system effectively treated all kernel code as

critical code (except for interrupt processing) and made
all kernel system calls non-reentrant. This means that
when the system is executing kernel code on behalf of a
process, as a result of that process executing a system
call, another process cannot begin execution until the
prior process completes its system call or the system call
blocks awaiting some event.

An examination of the read system call illustrates
how a non-preemptive kernel can lead to very large
latencies. When a process executes the read system
call, the kernel goes through some initial setup code and
then executes a loop as schematically shown below.

While
do
translate logical file offset to physical disk
block
is disk block in cache ?
if yes
get disk block from cache

more data to be read

if no
queue request to device driver to read
in disk block
sleep waiting for request to
complete
copy data from disk block to user buffer
adjust file offset and data count

done

It is clear that the only circumstance under which
the process can be preempted is if the requested physical
disk block is not in the cache. On a system with
hundreds of cached blocks, if a process requests a read
with a large amount of data, then the entire read system
call with numerous loops of the above code could execute
without once allowing a higher priority process to exe-
cute. The above situation was benchmarked and re-
vealed a CSL of 85 milliseconds.

Rewrite Of The UNIX Kernel

One solution to the problem of the non-preemptable
UNIX kernel is to totally rewrite it to be fully
preemptable. In this case, system calls are reentrant
and the kernel is fully preemptable except for short
periods while executing critical code. Critical code
occurs during manipulation of kernel data structures,
where the modfication to the structure must be fully
completed (a.k.a. atomic operation) before again using
the structure. With care and good design, the critical
code sections can be kept quite short. The longest such
section represents the variable component to the worst
case CSL.

Reimplementing a complex system while maintain-
ing complete compatibility is always problematical.

T e T T TS|

a
-

MARCH, 1989

7

Even if a UNIX-like system conforms to the explicit
POSIX or SVID standards, implicit standards such as
the order of error checking on system calls or the degree
of atomic operation of system calls can create incompati-
bilities.

For example, if file read/write system calls are
preemptable (non-atomic) and several processes are
manipulating the same file, then the file can get into
states which are not possible with atomic system calls.
However, some UNIX-like implementations are using
this approach. More discussion will be forthcoming in
a future column.

Adding Preemption Points To The Standard UNIX
Kernel E

Another solution is to introduce discrete preemption
points into the non-preemptable UNIX kernel. This
reduces the variable component of the worst case CSL to
the longest time between preemption points. The basic
strategyis to add sufficient preemption points to achieve
the desired worst case CSL. However, great care must
be exercised not to insert preemption points into critical
code sections. This canbe a tricky business, because the
standard system does not always localize critical code.

Fortunately, in practice most preemption points can be
inserted where the kernel is already prepared for a
context switch.

This approachis simply illustrated by turning to the
previousread system call example and adding a preemp-
tion point as shown highlighted in the schematic below.

While more data to be read
do
translate logical file offset to physical disk
block
is disk block in cache ?
if yes
get disk block from cache
if no

queue request to device driver to read
in disk block
sleep waiting for request to
complete
copy data from disk block to user buffer
adjust file offset and data count
is higher priority process runnable ?
if yes
context switch to higher priority
process

done

The previous benchmark was also rerun with this
simple preemption point added, reducing the latency
from 85 to 3 milliseconds.

Special Note About Workstation Display Drivers

Device drivers are a common source of non-
preemptable code which are often overlooked. Specifi-
cally, the culprits are drivers which do a lot of processing
such as console displays on PCs or workstations. A
memory-mapped display driver may require a lot ofhost
processor time to perform certain display functions,
such as scrolling (windowing systems on dumb bit-
mapped displays present the most extreme cases). The
one second latency mentioned earlier involved a process
executing a write system call to the console using a IBM
EGA display. The solution is to add preemption points
into the driver, exercising care to deal with reentrancy
and interrupt initiated activity (display output as a
result of a keystroke).

Measured Results Using Preemption Points

A number of UNIX system vendors have used the
strategy of adding preemption pointsinto their standard
kernel. Concurrent (previously MassComp) with RTU
and Hewlett Packard with HP-UX have both used this
strategy and bounded their worst case CSL.
VenturCom’s RTX/386, a modular real time extension to
the standard UNIX system, and VENIX/386 implemen-
tations also use this strategy and have a benchmarked
worst case CSL of 2 milliseconds (minimum: .46 ms;
average: .5 ms; worst case: 2.0 ms).

The VenturCom implementation introduced only
thirty preemption points into the entire UNIX kernel.
The trick, of course, is where. Selecting the preemption
points was based on analysis of source code and exhaus-
tive kernel runtime profiling, looking for long threads of
non-preemptable execution and inserting preemption
points. These were primarily in memory management
and block I/O routines. Adding even more preemption
points could further reduce the worst case CSL; how-
ever, this approach is rapidly reaching the point of
diminishing returns. For example, doubling the num-
ber of preemption points would not come close to halving
the worst case CSL, and would start involving signifi-
cant rewriting of cridical code regions.

A Hybrid Variation

The authors have researched another approach
which is a hybrid of the first two and is based on the fol-
lowing observations. First, real time applications that
demand fast response times (sub-millisecond) generally
directly interface to the appropriate hardware, and do
not rely on system calls or kernel services as part of the
fast response because of system overhead. Each UNIX
system call introduces at least .1 millisecond. Second,
the standard UNIX kernel can easily be made fully
preemptive if the new process does not execute a system
call (or page fault, etc.).

This means that areal time process of this type could
start execution immediately after an interrupt, subject
only to the fixed components of the CSL, without any
kernel preemption latency. However, system calls in
this situation would block, and execution continue until
a preemption point is reached. This hybrid approach
effectively defers the kernel preemption latency from
the CSL to the first system call.

This can be implemented as an event handler in a
user process, similar to a normal UNIX system signal
handler, where the worst case CSL to the event handler
would be hundreds of microseconds. The first system
call, if any, executed by this event handler would then
incur additional latencies.

Conclusions h

The strategy of adding preemption points into the
standard UNIX kernel bounds the CSL for a previously
unbounded kernel, and dramatically reduces (by a factor
of 100) some of the frequently occurring latencies. This

THE UNIX TECHNOLOGY ADVISOR

apporach has the additional advantage of introducing
only minor kernel changes, allowing the rapid tracking
of new kernel releases and easy implementation on
different existing UNIX versions.

On the other hand, a kernel rewrite strategy should
give 50% to 80% better results on a worst case CSL.
However, this approach introduces a significant risk of
subtle incompatibilities to application software and will
require the rewriting of device drivers, representing a
significant incremental cost.

In the final analysis, it all depends on the worst case
CSLrequired by the application. The latencies achieved
with current commercial versions of UNIX systems with
preemption points have opened up a wide range of real
time applications which were unimaginable with stan-
dard UNIX systems.

Dr. Myron Zimmerman, President, VenturCom, Inc.
Naren Nachiappan, Director of Research and
Development, VenturCom, Inc.

INDUSTRY FORUM

The OSF Decision

By Dr. Ira Goldstein

Editor’s note: The Open Software Foundation (OSF)
announced its choice of User Interface products, referred
toasthe User Environment Component (UEC) of the OSF
open applications environment, on December 30, 1988.
The choices were made following a UEC Request for
Technology issued to OSF members.

The OSF UEC will becomethe first OSF product offering.
As such, it will have a tremendous impact on User
Interface standards for the foreseeable future. The prod-
uct will be a source code package that will run on any
System V.3 compatible operating system.

The following material is adapted from the OSF User
Environment Component Rationale Document issued
January 11, 1989. It includes a brief description of the
technology model used by OSF to make its decision, plus
a detailed description of the actual UEC offering.

Reprinted with the permission of OSF.

Technology Framework

The OSF user interface technology framework (see
Figure 1) is a conceptual model based on work from the
National Institute of Standards and Technology (NIST)

and X/Open. The framework assumes a client-server
model as is used in the X Window System™, Version 11,
wherethe serveris a workstation or specialized terminal
with a screen, keyboard, and pointing device, and the
client is an application program.

Application Layer

ialog Layer Window

Presentation Layer anager
Toolkit Layer (Widgets)
Toolkit Intrinsics Layer

Base Window System Interface Layer (Xlib)
Data Stream Encoding Layer (X Protocol)

Figure 1: Technology Framework

Layers 0 through 5 of this layered model typically
are implemented as library routines linked with appli-
cation code, represent by layer 6.

In addition to the layers, the framework describes
interactive design tools and window managers. Interac-
tive design tools are separate applications, pictured as
producing output, which drive the presentation and dia-
loguelayers. Window managers are special applications
that communicate with ordinary applications through
their presentation and dialogue layers. Briefly, the
layers are:

Data Stream Encoding Layer (0): X11 protocol:

graphics primitives, manipulation of nested and over-
lapped windows, specialized inter-client communica-

)

N

MARCH, 1989

9

tion.

Base Window System Interface Layer (1): Xlib,a C
interface built on top of the X11 protocol.

Toolkit Intrinsies Laver (2): Xt Intrinsics, built on
top of Xlib, for construction and use of user interface
objects.

Toolkit Layver (3): the OSF toolkit, built on the Xt
Intrinsics, containing a set of ready-made user interface
objects.

Presentation Layer (4): support for initializing or
altering the presentation aspects of an interface.

Dialogue Layer (5): interaction mediator between
application and user.

Application Layer (6): application code.
Interactive Design Tools: separate programs ena-

bling the user to define an application’s interface.

Window Managers: separate application imple-

menting window management policy.

UEC Scope

The submissions to the UEC Request for Technology
included X extensions, graphical toolkits, text manage-
ment toolkits, user interface toolkits, presentation de-
scription languages, dialogdescription languages, inter-
active design tools, window managers, graphical desk-
tops, and graphical shells. The OSF model of technology
(see Figure 2) groups them into three concentric compo-
nents, as shown below.

Compound Documents

Desktop Information APT
High Level UI Toolkits,

X Extensions

Online Help

Interactive Design Tools

Printing/Imaging Toolkits

Text Management Toolkits

Figure 2: OSF Technology Model

At the center of this model is the core offering, con-
taining basic technologies which OSF makes available
and encourages the industry to license. The UEC core
offering consists of:

¢ A Style Guide

¢ A Window Manager

e A Toolkit

* A Presentation Description Language

* Associated Documentation

The second ring of Figure 2 labelled “catalog” con-
sists of products that are consistent with the OSF core
but are supported by their suppliers. The third category
consists of research prototypes and tools that are made
available for industry review.

The following sections describe the components of the
offering, and are excerpted directly from the Rationale
Document.

Style Guide

A style guide is a multi-faceted document. At one
level it is a specification of the constraints and flexibil-
ity of the window manager and toolkit behavior. The
style guide specifies the appearance and behavior of
these technologies from the user’s perspective. On
another level, a style guide is a guide to usage, a cook-
book for application writers where the ingredients are
the toolkit widgets.

Since OSF has selected the HP window manager,
with additional features from the Digital window man-
ager,and a merged HP and Digital toolkit, it follows that
the style guide also should be a merged document based
on the selected technologies. Thus the OSF style guide
will be based on the corresponding documents from
Digital Equipment Corporation and Hewlett-Packard/
Microsoft. It will describe the PM compatible behavior
inherent in the OSF window manager and toolkit, as
well as the extensions to this behavior and appearance.

Window Manager

OSF has selected Hewlett-Packard’s submission as
the basis of the OSF window manager. In addition, the
window manager will also include selected features from
the Digital window manager such as the Icon Box.

The window manager supports Presentation Man-
ager behavior and layout, and provides the 3D, or bev-
elled, appearance which has been chosen as the OSF ref-
erence appearance. The appearance is supported on,
and takes advantage of, both black and white and color
workstations. This appearance, however, is provided
only as a reference. Vendors are free to modify or
enhance it as they wish. The window manager is
compliant with the Inter Client Communication Con-
ventions Manual (ICCCM) from the X Consortium, and
its implementation is based on the toolkit.

The window manager supports a great deal of cus-
tomization in both appearance and behavior, including
support for both real-estate-driven and click-to-type
focus models. In addition, the colors and styles associ-
ated with the 3D appearance can be varied widely in
order to adapt to different screen sizes, resolutions, and
color capabilities.

The Digital Icon Box holds icons for each of the

10

THE UNIX TECHNOLOGY ADVISOR

—

windows managed by the window manager, collecting
them together in a single location, and allowing them to
be moved as a group. The size of the icon box can be
limited. Ifthere are more icons than fit in the icon box,
serollbars are automatically provided. Icons are dis-
played even for windows which are mapped; double
clicking on such an icon raises the corresponding win-
dow above other windows on the screen, providing a
particularly convenient means of regaining access to
obscured windows.

Toolkit

OSF has selected a merged toolkit, based on a com-
bination of the HP/Microsoft and Digital submissions. A
limited number of widgets, such as the Digital Help
widget, have been excluded. In addition, modifications
have been made to make the names of the final widget
set internally consistent. The table below (see Figure 3)
contains a list of the objects supported by the OSF
toolkit.

The application program interface provided by the
toolkit is that supplied by the X Intrinsics, as extended
by the Digital toolkit. Additions are being made where
necessary in order to support the HP toolkit functional-
ity;however, these changes should notinterfere with the
application program interface (API) available to mem-
bers in the initial snapshot.

The behavior of the toolkit conforms to Microsoft’s
Presentation Manager, as specified by the HP/Microsoft
submission, with additional extensions to take advan-
tage of the power of networked, X-based workstations.
This compatibility should provide users with a simple
learning transition between PC and workstation envi-
ronments, as well as simplifying the documentation
needs of products available on both types of systems.

Presentation Description Language

OSF has selected Digital Equipment Corporation’s
UIL (User Interface Language) as the basis of a presen-
tation description language for describing the presenta-
tion aspects of user interfaces. This language can be
used directly by interface designers who need not have
extensive programming expertise.

Interfaces described in this language are compiled
to a binary format. Thisbinary format is not linked with
an application program, but is read by the program at
runtime. This means that changing the presentation
aspects of an interface does not require that the applica-
tion program be recompiled or relinked, leading to very
fast turnaround in tuning an interface design. Both the
description language compiler and the runtime inter-
face manager will be based on Digital’s UIL technology.

UEC Documentation

Documentation quality is critical to the success of
the UEC offering. The documentation effort will empha-
size easy access to accurate and useful information, by
providing a cohesive overall organization, effective
graphics, useful examples, and navigational tools such
as high-quality indexes.

The initial documentation set will include the fol-

lowing types of manuals:

o A Style Guide covering compatibility with Presen-
tation Manager behavior, and conventions for
toolkit component usage.

o The UEC Applications Environment Specification
(AES). This specification will define all the inter-
faces classified by OSF for Full or Trial-Use AES
status. Interfaces defined in the AES are stable,
notimplementation specific, supported overalong
period of time, and modified only after a lengthy
review process.

Figure 3: Objects Supported by OSF Toolkit

Basic Widgets Scrolled Widgets

Drawing Area graphics workspace ScrolledText scrolled text area

Separator lines for separating areas ScrolledList scrolled list area

Label static text and graphic area ScrolledWindow generic scrolled area

Scale slider for getting numeric values

Scrollbar scroll control Specialized Composite Widgets

PushButton task activator RadioBox collection of ToggleButtons

DrawnPushButton pushbutton with user-drawn graphic SelectionBox widget for selecting one among a list of

ArrowPushButton pushbutton with drawn arrow graphic strings

ToggleButton button with state FileSelectionBox special SelectionBox to deal with

CascadeButton button for cascading menu items selecting files

OptionField field allowing an enumerated set of values

Text text entry and editing Basic Top-level Widgets

Command input pad with transcript MainWindow top level application window
BoardDialog Board used as a transient dialogue box

Composite Widgets FormDialog Form used as a transient dialogue box

Board bulletin board for arbitrary placement of Menu popup or pulldown menu

objects

Form object layout using alignment constraints Specialized Dialogue Widgets

List list of strings MessageDialog dialogue box to display a message

SashedColumn column with resizable subareas CautionDialog dialogue box to display a caution

RowColumn object layout with row and column WorkDialog dialogue box to display a work in

constraints progress notice
MenuBar menu area for pulldowns
Frame container providing 3D framing

~

MARCH, 1989

11

¢ Reference materials describing all programming
interfaces. These will be available as on-line man
pages as well as hard - copy manual format. The
reference materials will document all interfaces
defined in the specification, as well as any that are
part of the offering but not included in the specifi-
cation.

¢ A task - oriented programmer’s guide providing
how-to information about the offering.

Documentation will be part of every “snapshot”
released during the development process, both in source
and on-line output format.

In the coming months, OSF will be announcing
Requests for Technology that extend this core offering to
other areas of the user interface. ‘

The OSF Research Institute will be working with
universities to explore innovative extensions of the OSF
core technology.

Dr. Ira Goldstein, Vice President, Research and
Advanced Development, OSF

X Window System is a trademark of MIT
EEsmvassm e e]
SECURITY

DAC - The Immediate
Future In Trusted Systems

By Steve Sutton

The UNIX system has come along way from the aca-
demic curiosity of the early seventies. It has emerged as
one of the few national — more properly, world-wide —

operating systems, positioned squarely at the center of
the consumer-driven movement toward “open systems.”
It has also become a critical element of systems that
must be “secure” in some sense of the word — whether
for national defense or for high-volume electronic funds
transfer.

The UNIX industry has done well in keeping abreast
of “soft” security with many small fixes to common UNIX
foibles. However, major feature extensions for highly-
secure systems lie ahead. Driven by monstrous federal
procurements, vendors can no longer avoid “trusted”
systems that will provide significant new forms of secu-
rity for end-users. Careful users who genuinely want
more security need to know what to expect, what to look
for, and how to plan for it.

Control over which users can access which data, and
how they can access it, is by any measure a fundamen-

tal component of “security.” One of the key features of
trusted, “secure” systems, and also a feature of all
standard UNIX systems, is the topic of this column:
discretionary access control (DAC).

While certainly useful, DAC is not sufficient for en-
vironments where breaches in access control have se-
vere consequences and where malicious users are likely.
Defense-related activities have always held these envi-
ronments; other federal and commercial environments
are increasingly faced with this situation. As a result of
this demand, vendors will strengthen DAC, and other
access controls will be added to UNIX systems. Many
access control additions will respect backward compati-
bility, and will likely be optional to the end-user.

-The Trusted Computer Systems Evaluation Criteria
(TCSEC, commonly called the “Orange Book” or, by
insiders, simply “the Criteria”) is the major driving force
through which trusted features are beingadded to UNIX
systems. Itisthe guide by which the National Computer
Security Center (NCSC) evaluates and rates commer-
cially available trusted systems. An NCSC rating is
increasingly required by large federal procurements.

The TCSEC was formulated in the early eighties
from Department of Defense (DoD) policy and practice.
It contains basic security technology applied in a ra-
tional manner; its applicability extends far beyond the
DoD. The current IEEE POSIX effort for trusted system
standards, P1003.6, is using the TCSEC as its principal
guideline. Not surprisingly, access control is a major
topic of TCSEC.

This article will focus on what is likely to be imple-
mented in the trusted UNIX system standards, like
POSIX. Access controls are a major part of these trusted
system features, and DAC is the one of immediate
interest.

There are two other important forms of access
control: mandatory and integrity. All three are comple-
mentary and all will eventually appear in highly trusted
systems. Mandatory access control (MAC) is based on
the control of all access tofiles by the system administra-
tor. Integrity controls are mandatory access controls on
alteration. Both MAC and integrity will be dealt with in
future articles.

In general, each separate kind of access control
protects data regardless of the others. All must allow
access in a given mode — any dissenting vote will
preclude access. Both mandatory and integrity controls
cure some of the implicit problems with DAC, and at
least mandatory controls will be required in most highly
secure environments.

Terminology

We will use the term “access mode” for a potential
manner in which access is allowed (read, write, etc.).
The term “object” will refer to a container of data to

12

THE UNIX TECHNOLOGY ADVISOR

which access is controlled. Fortunately, most UNIX
system objects are accessible through the file system.
For simplicity, the reader can generally equate “object”
to “file.” The term “administrator” will refer to a user
with special security or operational responsibilities.

The term “trusted computing base” (TCB) is taken
from the TCSEC and refers to all portions of the system
(hardware and software) that must be trusted to uphold
(that is, are capable of compromising) the security rules
of the system. A key element of trusted operating
systems is that untrusted components are freely al-
lowed. They are precluded from violating the system
security rules by the TCB.

One final note. There are a lot of acronyms in secu-
rity, and you might as well get used to them. DAC, MAC,
TCSEC, and TCB are the most common oriés.

Discretionary Access Control

DAC is a scheme in which the owner of an object can
determine which users can access the data and the
modesin which that access can take place. Hence, access
control is at the “discretion” of the owner. Inherent in
this scheme, and in UNIX systems, is the fact that each
object has an owning user, and perhaps group. There is
really no intent in DAC that system administrators
restrict the degree to which a user can expose owned
data, although some DAC schemes have such features.

UNIX Permission Bits

Currently, UNIX systems implement a form of DAC
commonly called the “permission-bit” scheme. Objects
are given a set of nine permission-bits. Each group of
three permission bits denotes the ability to read, write,
and execute, respectively. The three groups apply to:

® The user that owns the object (which we will
simply call the “owner”);

* The group associated with the object;

* And all other users.

Most users see permission bits as the familiar “rwxr-
x--” strings used in the chmod and Is commands. The
read(“r”) and write (“w”) modes have the usual mean-
ings. The execute (“x”) mode means something different
for files than for directories. For files, it applies only to
executable (program) files and means that the user can
run the program. For directories, it means that the user
may “enter” the directory in pathname searches; this
“search access” doesnotbyitselfallow reading or writing
of files within the directory. This is illustrated by the
following figure:

owner group others
[TWX_ | TWwW- [Fr--]
123 456 789

In this figure, the owner (jjones) is given read, write,
and execute permission, the group (tellers) read and
write, and all other users read only. These would be
entered as “rwxrw-r- -” in the chmod command.

The ACL

Permission bits are simple and usually sufficient.
Their main shortcomingis that they do not allow a more
detailed specification for access.

Suppose for the preceding example you wanted to
give just one more user, bsmith, who is not a member of
tellers, read access to the file. The only way is to ask the
system administrator to include bsmith in the group
tellers; this may inappropriately allow bsmith access to
all files restricted to group tellers.

The access control list (ACL) is the DAC scheme that
is the most straightforward extension of permission-
bits. It associates an ACL with the object. The ACL is
aseries of entries, where each entry designates access to
a particular user, a particular group, or to all users:

user: jjones rwx
group: tellers rw-
others: r--

This example has one user entry, jjones, one group
entry, tellers, and the entry for “others.” It allows the
same access as the permission-bit example above.

user: jjones rw-
user: bsmith rw-
user: oddman - - -
group: teilers r--

Here, users jjones and bsmith are given read and
write access. Group tellers is given read only access.
However, note that oddman is given no access. Since
oddman is listed before the group, oddman is given no
access even if oddman is a member of tellers. In effect,
all members of tellers are given read access except
oddman, who has no access. This example begins to
illustrate the power of ACLs.

There are many variants on this scheme. One popu-
lar extension is the ability to specify access to a particu-
lar user within a particular group.

Restrictions on the order of the ACL entries vary be-
tween schemes. Some allow the user to order the entries
arbitrarily. These are flexible but can lead to confusion.
Many require the most specific entries to come first, i.e.,
specific user entries, followed by specific group entries,
followed by the “other” entry, if present. Most schemes

MARCH, 1989 i3

search the entries from the top and stop when they first
find a match, as in our ACL example above.

Anumber of other DAC schemes have been proposed
in the security literature. However, since ACLs are a
direct extension of standard UNIX system permission
bits, and wording in the TCSEC is directly targeted
toward ACLs (although other forms are not precluded),
it is unlikely that any other scheme will become the
UNIX standard. A few UNIX system vendors provide
ACLs and no significant UNIX versions provide other
forms of DAC.

Default DAC

The default DAC is the information placed on a
newly-created object. This is quite important since few
users want to manually set the DAC time after time.
UNIX systems set the permission bits based on a prop-
erty of the program called the umask, which limits the
bits that are given as default. A user typically sets the
umask on login and all files created will be given the
corresponding defaults.

For ACLs, defaults are a little more complicated.
There are two basic opinions. One is that the default
should be based primarily on the directory in which the
file is created. The other is that it should be based on a
property (a default ACL) of the program. Which is
correct and which will prevail only time will tell. How-
ever, default ACLs are a difficult issue of which both
vendors and end users need to be aware.

The Problem with ACLs-Backward Compatibility

ACLs are the popular choice for extending UNIX
system DAC. If they could simply replace the permis-
sion bits, then a simple, “clean” form of ACL would
suffice. However, the vendors that participate in the
standards forums, such as POSIX, demand backward
compatibility. In particular, current programs and
shell-scripts that contain permission bit operations
should function unchanged when applied to objects that
have ACLs. Moreover, the security intent of these
programs should carry over.

Unfortunately, the kind of protection intended by
the permission-bit operations cannot be unambiguously
applied to ACLs, particularly large or complex ACLs. So
the strategy of the standards bodies has been to define
an ACL scheme that is a compromise between simplicity
and backward compatibility.

One proposal is for both permission bits and an
optional ACL to exist, and for the permission bits to
interact with the ACL. The group permission bits would
serve as a “mask” (limitation) on the ACL. If the group
permission bits were r-- (read only), then the ACL could
at most give read access — and no others.

The advantage (which is probably far from obvious)
is that a user or shell-script that blindly applied “***r--

***? to the ACL-protected object would do approxi-
mately the right thing.

Further details of these proposals are beyond this
article. The main pointis that the standard ACL scheme
will be more complicated due to commitment to back-
ward compatibility.

The Prognosis for Extended DAC in UNIX Systems
What canyou, the UNIX developer, expect to have to
support for extended DAC in trusted UNIX systems?
First, we should note that ACL-like extensions to the
permission-bits are a commonly requested feature for
UNIX systems, even from users that would not consider
themselves as having demanding security require-
ments. Second, along with security auditing, ACLs will
be one of the first security enhancements to appear.
The good news is that applications that rely on per-
mission-bits will continue to function on objects with the
new ACLs. The bad news is that the ACL schemes will
be more complex than if compatibility could be ignored.
Conformance to the standards is virtually required.
Vendors will likely consider two additional kinds of
features:
* Since the standard ACL format may be less than
simple, user-friendly interfaces will become highly
desirable. Many casual UNIX system users do not
understand permission bits — ACLs will only be
harder.

® More features to add access granularity to the
standard ACL scheme are possible. For example,
modes other than “rwx” could be added, such as
delete or the ability to define the DAC for an object.

While the former are attractive, sellable features,
the latter are specialized and should probably be
avoided by the general vendor.

As one last issue, does this mean that all files need
ACLs? Ifso, then pre-existing disk pack formats would
not be allowed, since they would have only permission-
bits. Fortunately, even the TCSEC will allow access to
pre-existing permission-bit only disk packs. The ACL
will be a feature that would normally be provided for
“new” packs.

The Problem with DAC

The problem with DAC is that any program running
on behalf of the user is allowed (by the operating system
kernel through system calls) to change the DAC of any
object owned by that user. The kernel, which can be
assumed “trusted,” has no way of knowing if the user
actually intended the change to be made, or whether the
program itself made the decision unknown to the user.

Programs with malicious code can therefore “give
away” data unknown to owners who would normally

*

14

THE UNIX TECHNOLOGY ADVISOR

want to control access. Such malicious programs are
called “Trojan Horses” because the malicious intent is
masked by an overall benign appearance.

No one wants such programs on their system. How-
ever, for the foreseeable future one cannot avoid them in
practice. Most UNIX sites need many applications from
diverse sources, including internally developed pro-
grams. To limit one’s selection to the few that have gone
through a rigorous testing program is rarely practical.

Does this mean that DAC is useless? No. It simply
means that DAC is inherently susceptible to a common
penetration scheme. This is precisely why the other
forms of access control (MAC and integrity) are impor-
tant; they are not susceptible to this problem.

As an illustration, a mandatory access control is one
wherein the owner of an object is not allowed to arbitrar-
ily specify which other users can access the object.
Instead, access is based on overall controls established
and maintained only by system administrators. Since
the user can never relax a mandatory control (i.e., allow
more access than would be allowed by the administra-
tive control scheme), neither can Trojan Horse progams.
Hence, the principal security susceptibility in DAC is
not present in MAC.

For Implementers Only

Discretionary access controls are basically a fea-
ture-level extension. In the main, they do not require
any fundamental reorganization of the underlying sys-
tem, and can be surprisingly easy to implement. In gen-
eral it is more difficult to define the features than to im-
plement them. Given that at least one popular stan-
dards group (POSIX) is defining interfaces for these
features, the easier part is left to implementers.

Backward compatibility can be reasonably main-
tained, and this is certainly the commitment by the
standards groups. The different access control schemes
(discretionary, mandatory, etc.) are essentially inde-
pendent and can thus be bundled in any combination.

The major implementation issue is that the file
system format will have to be augmented to hold addi-
tional access control information. This puts yet one
more burden on the file system designer and can be a
moderately large effort. The second issue — probably
the harder of the two —is to be able to present end users
with genuinely useful and friendly interfaces to the
mechanisms.

For Programmers Only

What does the programmer need to know about en-
hanced forms of DAC?

The biggest problem is programs in existence today
that manipulate the permission bits. When they deal
with objects that have ACLs (or other extended DAC in-
formation) they may not quite do the security function

that was intended. Some tips on how to avoid this:
¢ Write programs that do access control from a high
level. Use a standard of routines like “block all
access,” “block access to all but owner,” or “grant
publicread.” As DAC extensions emerge, only these
routines will need to change — not the programs
that call them.

¢ Scan old shell-scripts for chmod statements.
These will be a source of problems.

¢ Don’t use stat and chmod to gain temporary
exclusive use of files. Use a real locking mechanism
if possible.

* Give some thought to the places where you really
need more detailed access controls — where ACLs
will be welcome — and where you don’t.

For Buyers Only
When you buy a trusted system, ask the following
questions about DAC extensions:
¢ Can you either deny or grant access to specific
users and also to specific groups? You should be
able to.

e How well do permission-bit commands (like
hmod) work on files with extended DAC?

* Has the vendor made it easy to use the extensions?

Most ACL schemes will be a compromise between
backward compatibility and cleanliness, and it is pos-
sible to provide sets of commands that work with “vir-
tual images” of the ACLs that make them seem cleaner.

* How do default mechanisms work? Are defaults
based on the directory in which files are created, or
on attributes of the creating program (like the
UNIX umask)?

When you start to get systems with extended DAC,
think about the following:

¢ Standing between the devil of permission bit and

the deep blue sea of ACLs may be difficult. Decide

where you need more detailed access control.

¢ Consider a set of personal or site-specific shell
scripts for common operations, like those above
(e.g., “block all access”). With any luck, your vendor
will give you these — eventually.

¢ Consider living only in the new world of ACLs by
using only ACL commands, even if they only pro
vide protection synonymous with permission bits.
Permission bits are not terribly clear to today’s

s s e s o EEBTRE L R e s s e

~»

) o

on

MARCH, 1989

15

casual users. ACLs may turn out to be clearer.

Summary

No single access control mechanism amenable to
standardization in UNIX systems is sufficient for highly
secure environments. Instead, a combination of discre-
tionary controls, which UNIX systems have, and man-
datory controls, which are not available in UNIX sys-
tems, will be required.

Today’s standard UNIX systems have a usable form
of DAC, the permission-bits, that will likely be aug-
mented with ACLs. The form of the ACL will be a
compromise between simplicity and the preservation of
backward compatibility. While there will be some oppor-
tunity for vendors to add DAC features beyond the
standard, they are small.

ACLs are regarded as a useful feature in almost all
environments and represent the most immediate access
control expansion for UNIX systems. However, the

demand from the federal sector (specifically, systems
evaluated according to the TCSEC) will cause MAC
features to appear soon. As evidence, the current POSIX
effort (1003.6, due in late 1990) is targeting both ACLs
and MAC for the first version of trusted features exten-
sions.

The Last Word
Perhaps the only certainty is that:
® Vendors who do not choose to offer TCSEC secu-
rity will find themselves with an ever-dwindling
segment of the UNIX system market;

¢ End-users that are not at least a little prepared
for the systems will be missing a great opportunity
or will be subject to more than a little trusted
system culture shock.

Steve Sutton, Trusted Systems Consultant

INTERNATIONALIZATION

What’s Required of a Truly
International UNIX
System?

By Greger Leijonhufoud

Five years ago, a UNIX environment adapted to the

'needs of non-English-speaking users was not a high

priority for anyone.

Of course, some developers and software houses had
already seen a market for their products in Europe and
elsewhere. The usual solution was a new version of the
software, adapted to the local requirements, using the
appropriate language or other local information for each
country.

Multi-national corporations faced the same prob-
lem, using one of two approaches: either localize appli-
cations, in effect creating different systems (sometimes
with conversion facilities), or decide that “business is
conducted in English.”

The result: most local subsidiaries had their own
systems, incompatible with sister subsidiaries in other
countries, causing substantial support and coordination
problems. An invoicing system installed in the early
eighties in ten different countries usually required the
development of ten different versions.

This common practice is called localization because

it results in flavors of each product which address only
the local environment and requirements.
Internationalization is a new and different approach,
one which aims to provide system-wide tools that allow
developers to minimize the task of providing a separate
local environment, with fewer development, testing, and
support issues to deal with when taking advantage of
foreign markets.

Today there is much more interest in development of
a truly international version of UNIX systems. Several
manufacturers have released products, others are still
in the design and development phases. Fewer and fewer
question the whole concept. Standards bodies like the
ISO committees, the ANSI X3J11 (C language) and the
IEEE POSIX groups have incorporated internationali-
zation features in proposed and accepted standards.

With all this activity going on, it’s time to take stock
of where it might be leading us.

The Necessary Components For True
Internationalization

Most of us take for granted the fact that when we
communicate with a computer — through terminals,
automatic bank tellers, flight reservation systems,
rental car check-ins (and maybe even the car) — we can
do so in English. We also take for granted additional
support for the underlying concepts, such as sorting
order, date formats, the “decimal point” and more.

Non-English-speaking users face a much less con-
venient world. The output from an s is not listed alpha-
betically. The date is all wrong. Many can’t even use
their own alphabets, which may require more symbols
than the 7-bit ASCII code set provides for the 52 letters,

16

THE UNIX TECHNOLOGY ADVISOR

10 digits, and 32 punctuation symbols commonly used in
the U.S. environment. What an American reads as a
special symbol is a letter to the French, and may be a
different letter to Germans.

One obvious solution is to extend the code set to a
256-character 8-bit code. The drawback is that, even
though UNIX systems have always worked with 8-bit
bytes, the eighth bit is frequently used by applications as
a “flag”.

Some of the problems in internationalization are
trivial. But others are rooted in the fundamentals of the
UNIX system. In order to fulfill the main goal of inter-
nationalizaton — to provide the international program
developer and user with an efficient, easy, and familiar
environment — an international UNIX system must
provide the necessary tools to support different local
languages and local customs with the same version of
language-independent software.

And it mustbe possible to do so independently of pro-
gram code.

What Will It Take?
There are five main components of international
UNIX systems:

1. Character Sets and Code Sets
2. Compilers

3. Commands

4. Libraries

5. The Announcement Mechanism

All five elements must work together to support a
local environment.

Character Sets and Code Sets

Good programs are data driven. But good interna-
tional programs cannot afford to be code set driven, as
the traditional UNIX system is.

Since our goal is to be able to develop programs that
work in many languages, the current character set must
be expanded to support many additional symbols.

A character set is the sum of all the symbols (also
known as “glyphs”) we use to express ourselves in writ-
ing. The familiar character set is sufficient for the
English-speaker, but other languages require more
symbols — for instance, accented letters in French, or
the tilde in Spanish.

There are two types of alphabetic character sets:
Latin-derived and non-Latin derived. The Latin-de-
rived sets are typically small (26-50 letters), use only two
character forms (upper and lower case) and are seldom
syntax-sensitive. Many non-Latin sets, such as Arabic,
have four or more forms of each “letter”; the form is
syntax sensitive, and may be written right-to-left. In
addition, Latin symbols such as digits are often mixed

in. i

Non-alphabetic character sets, such asthe Japanese
Kanji and the Chinese Hanzi, require several thousand
separate symbols.

Character sets must be distinguished from code
sets. A code set is a representation of a character set.
Many different code sets have been used torepresent the
Anglo-Saxon character set: BCD, XS3, Fieldata,
EBCDIC, and ASCII, to name just a few.

In the early years, non-English character sets were
represented in the U.S.-derived code sets by replacing
less frequent special symbols by the local characters.
There are several “national” variants of the ISO 646
standard: the “|” (vertical bar) symbol in the U.S.
variant (also known as “ASCII”) is used in Spain for the
~ symbol and in Germany for the : symbol. Modern code
sets tend to leave the “basic” character set alone and add
symbols.

Japanese and Chinese code sets must cover thou-
sands of characters. The Japanese JIS 6226 code set
defines over 7,000 characters. An 8-bit byte is not
enough for such needs; the JIS standard uses 16 bits per
symbol.

As a user, I'm concerned that “my” character set is
supported. That may not be the same character set as
that required by another user on the same system; a
Swiss UNIX system must support at least four different
languages.

Developers are concerned about how these charac-
ter sets are represented, about “code sets.” UnlessI can
use a “universal” code set that covers all character sets,
I may have to mix code sets. The popular ISO 8859 code
set is not one, but more than nine code sets. 8859.1
covers Western Europe, 8859.2 Eastern Europe, and so
on. Some encodings are incompatible — ISO 8859
cannot easily coexist with IBM Extended ASCII.

So international UNIX systems and applications
have to be capable of functioning with many different
character and code sets at the same time.

Compilers

Most program development requires compilers. The
degree of internationalization required here is still a
matter of lively debate, but agreement is fairly broad
that at least the following are required:

1. Constants in the user’s language

2. Comments in the programmer’s language

3. A data type capable of representing characters
regardless of how many bytes are required; for
example, a Japanese “character” does not fit in a
byte and the C char is defined as a byte wide

In addition, some advocate that programmers
should be able to define identifiers and even keywords in

T T e T e e e S e e

on

MARCH, 1989

17

their own language.

Commands

Any UNIX command or utility that interprets or
processes data (display, editing, sorting, formatting)
must be modified to remove code set dependencies,
including:

1. Use of the eighth bit as a flag

2. Sign extension on size conversions

3. Array dimensioning based on code set size

4. String truncation, since multi-byte symbols
cannot be truncated in the middle

They must also be modified to adapt.to the local
conventions: :

1. The collation (sorting) order
2. The local date and time formats
3. The decimal delimiter

And they should also communicate with the user in
the user’s language.

Libraries

Library functions are the basic tool of the program
development system. The same changes required for
commands are also required for the system-wide func-
tions used in almost all programs. Some changes such
as case conversion may require a new design when the
process is more than a simple reciprocal substitution.

New library functions may also be required. The X/
Open Portability Guide (XPG) specifies a message cata-
log facility, enabling the developer to separate messages
from code, thus making local language adaptation much
easier.

Announcement

With the capacity to support multiple character sets
(and languages), the software now requires a mecha-
nism that can define, modify and report on the environ-
ment, including:

1. Names of months and weekdays

2. Local format of date and time

3. Decimal delimiter (radix) and currency
symbols

4. Collation order

5. Yes/No representation

6. Message language

Conceptually, this is similar to the terminal set-up
mechanism. It is controlled by the end user and trans-
parent to most programs.

When character and code sets, compilers, com-
mands, libraries, and the announcement mechanism
are allin order, we have an international UNIX product.
Itisnotyet adapted for the local environment, but all the
tools are there. It should now be a much easier task to
develop an application that can be self-adapting and
that often will not have to know the user’s language or
preferred decimal delimiter.

To support worldwide applications portability, some
aspects of the five elements must be common between
implementations. ‘

Standards Efforts

ANSI X3J11 is defining the syntax and behavior of
the C language (compiler and library routines). The
current proposal contains several internationalization
features, broken into three groups:

1. Modified C functions.

Character handling (ctype) functions are extended
to handle any 8-bit character set, and printing and
editing (printf/scanf) functions support decimal
delimiters other than periods.

2. New C functions

Selection of a specific “environment” (e.g., radix
character or alphabet definition) is handled
through setlocale, an alternate routine for date/
time fetching is defined, and non-ASCII collation is
supported through two new string manipulation
routines.

3. Multi-byte character sets

The current draft contains support for “wide” (multi-
byte) characters.

The POSIX standard 1003.1 defines operating sys-
tem interfaces and behavior, how the C language inter-
nationalization features can be expressed in a POSIX
environment, and also some things (such as time zone
support) that are outside the scope of the C language.

The P1003.2 committee is working on commands
and utilities, and has been working closely with the
/usr/group subcommittee to add such things as colla-
tion and regular expression handling for international
needs.

Although not a standards group, the X/Open Con-
sortium exerts a strong influence through the X/Open
Portability Guide (XPG). Adherence to the XPG is a
“marketing must” in Europe.

The /usr/group Internationalization Subcommit-
tee has been working on the topic for over two years. Re-
cently the amount of interest in and commitment totheir
effort has grown considerably. The group meets more
than 4 times per year and has wide representation from
major manufacturers as well as software houses. In

THE UNIX TECHNOLOGY ADVISOR

18

addition to providing input and comments to X3J11 on
the internationalization extensions, the Subcommittee
is currently working on messages and code sets.

What'’s Available Now?

Almost all major computer manufacturershavelong
since offered localized versions of their proprietary sys-
tems. Foremost of the localized systems are those
offered in Japan;both Japanese and American manufac-
turers have offered Japanese language and character
set support for many years.

Some manufacturers also have internationalized of-
ferings. Inthe UNIX arena, the leading maufacturersin
internationalization efforts, with available products,
are: :

AT&T: System V.3.1 provides the first internation-
alization features from AT&T. In addition to full
support for eight-bit code sets it also supports user-
specified date/time formats and character classifi-
cation. The System V.3.1 implementation does not
follow POSIX or X/Open.

Release V.4 promises to provide POSIX compatibil-
ity, and extends the internationalization to colla-
tion, multiple co-existing code sets, and messages.

In Japan, AT&T also offers a Japanese UNIX sup-
plement called Japanese Applications Environment
(JAE). In Europe, AT&T UNIX/Europe Ltd. sup-
ports a Frenchand a German Applications Environ-
ment which is X/Open compatible.

Bull: Offers support for Western character sets and
is X/OPEN compatible. ;

Hewlett-Packard: Provides fully X/OPEN compli-
ant systems, both for the Western (8-bit) and Asian
(16-bit) language areas.

IBM: AIX provides full support for internationaliza-
tion both in Europe and in Asia. Only the message
system is currently X/Open compliant, but IBM is
committed to both POSIX and X/Open for future re-
leases.

Siemens: Supports Western character sets and is
X/OPEN compatible.

Increasingly, applications are being developed us-
ing these interfaces.

Conclusion
Inthepast, internationalization of the UNIX system

and was undertaken without much consideration of
long-term effects. Existing implementations provided
incompatible interfaces. Porting an application often
required a re-write.

With the advent of X/Open, and the growingrealiza-
tion in the standards groups that internationalization
must be supported, the picture changed. To be viable,
internationalization must be portable. By cooperating
and agreeingon a set of common interfaces and facilities,
the UNIX industry is casting a solid foundation for a
truly international software industry.

That means that the software packages of tomorrow
will run equally well in Beijing, Belgrad, and Boston, on
UNIX systems from IBM, ICL, or INTERACTIVE.

How will this affect the average UNIX installation?
In future columns, we’ll try to answer some of those
questions.

Greger Leijonhufoud, Principal Member of Techni-
cal Staff, INTERACTIVE Systems Corporation

STANDARDS

Programming For The
POSIX Era: A Case History

By Shane P. McCarron

In September of 1988, the IEEE Standards Board
approved the first major programming standard for the
UNIX Operating System — POSIX. This base level
standard promises to change the way in which people
manufacture, purchase, and use UNIX-based machines.
It, along with its sister standards now being specified,
describes a portable interface for application develop-
ment that could make it much easier to write software
for UNIX systems.

Unfortunately, there is a hitch. For each software
developer with an existing application there is an exist-
ing customer base whose systems may never conform to
these new standards. And even though there are few
conformant systems around today, as they become avail-
able and potential customers buy them, developers will
need to support this new, standard environment in
addition to all the environments they have supported in
the past.

This gives rise to a question: Is there a way to use
these standards environments, universally, today? In
this article, I will present some methods that may assist
software developers using the new interfaces that are
being standardized in this, the POSIX Era.

Instead of focusing on software engineering issues,

was often the result of immediate marketing pressure

MARCH, 1989

19

I will address ways in which you can program for
portability — writing software that will execute in many
environments under a variety of configurations.

The Problem

So, what makes it a problem to write software that
will function on a wide variety of UNIX-based machines?
The obvious answer is that there are many different
vendors, and each of them has their own flavor of UNIX
system.

This answer is correct as far as it goes. To elaborate,
many of the machines have different format tapes,
diskettes, serial interfaces, devices names, compiler
features, etc. Then there are the more basic software
oriented problems, like different library interfaces, dif-
ferent system calls, and of course different bugs:.

Those are vendor created problems. End users
create their own set of headaches by each having a
different favorite terminal, none of which emulate very
well whatever it is they are trying to emulate. Portable
software needs to address all these issues, and still
attempt to do whatever was supposed to get done in the
first place.

On the software developer side you have an addi-
tional group of problems. First on the list is that no one
is ever given the time to do it right. It is almost impos-
sible to explain to a vice president somewhere why you
need twenty man months to develop a set of software en-
gineering standards and portable programming guides.
It is well and good to say that this herculean effort will
make it easier to develop software when it’s done, but in
the interim none of the customers are getting product.

A Solution?

For the last few years I have looked to the standards
world to solve my problems for me. Having standards
interfaces for all aspects of the system would naturally
make my job easier. Conscious portability (placing
explicit references in code for specific systems) would no
longer be an issue.

Unfortunately, the UNIX interface standards de-
fined thusfar are base level standards. They provide for
the simplest functionality of a system —read, write, and
the like. Any moderately complex application needs
more than is defined by any of the standards around
today.

Real world applications need facilities like window-
inginterfaces, databases, and networking. There are no
formal standards with defined UNIX interfaces for any
of these, yet.

Further, the standards that are under development
are so immature that their final form cannot be pre-
dicted. Put simply, there are twofundamental problems
facing the software developer who wants touse standard
interfaces: implementations don’t exist for defined stan-

dards, and standards don’t exist for the interfaces that
are really needed.

An Approach

All is not lost! The IEEE Std 1003.1-1989 (POSIX)
is well defined, and ANSI X3.159 (ANSI C) is about to be
finalized. Sure, these are only base level standards, but
at least they will (probably) be on every major implem-
entation in the not-too-distant future. They will provide
a good foundation for portable application development.

Recently, a group of us decided to try to implement
the POSIX and ANSI C interfaces on top of existing im-
plementations. While this has proven to be very chal-
lenging, it is not totally impossible. The interfaces
described in POSIX and ANSI C can be built, and can
provide most of the functionality described in those
documents — without access to system source code.

This was the key to our implementation, and guided
every tough decision and compromise we had to make. If
anything required system source modification, it wasn’t
acceptable. Most application developers do not have
access to the system sources — source code licenses tend
to be very expensive, restrictive, and hard to come by.
This was not the path we wanted to take.

Operating under this restriction meant that it was
impossible to provide all the functionality of these stan-
dards on all existing implementations. Some aspects of
POSIX are going to require massive kernel changes on
the part of implementers, and emulating the behavior
within an application just can’t be done.

On the other hand, all of these interfaces can be pro-
vided, and routines placed behind them to perform much
of the functionality as reasonably as possible.

The Choices

But let’s get specific. The following is a summary of
thoseissues in POSIX that were particularly difficult on
traditional flavors of UNIX systems.

Job Control

POSIX defines functions and structures that permit
user control of processes through some well known
mechanisms. This is an optional feature of POSIX, and
is unfortunately impossible to emulate on systems that
do not have some form of Job Control to start with.

Since it is optional, and since there is rarely a need
to use any of the features from within an application
(almost never from within a portable application), we
decided not to implement it.

It would be possible to provide almost all of the func-
tionality on top of existing implementations that have
the BSD-style job control. Unfortunately, POSIX has
added a new level of abstraction to the traditional model
— the session.

Providing all of the POSIX required functionality for

20

THE UNIX TECHNOLOGY ADVISOR

session, process group control, and finally specific proc-
ess control cannot be completely implemented without
kernel modification.

Signals

The traditional UNIX process signaling system has
beeninits current state for many years. POSIX provides
a new set of signal manipulation routines that allow for
more robust handling of these events. The new signal
interface has been dubbed “reliable signals” because it
requires some actions to be atomic that formerly had
vulnerable windows.

Specifically, the routine sigsuspend is guaranteed to
cause the process to wait until a signal in a user defined
set is delivered. Formerly this had to be done using
several calls to signal followed by a call to pause. During
this time it was possible for the signal you really wanted
to be delivered without your current thread realizing it,
thus causing the process to wait forever.

While the functions that are atomic under POSIX
cannot be made so without kernel modifications, the
functionality can be emulated using a complex signal
handling system that captures all signals as they arrive,
and delivers them to user provided routines only when
requested to do so.

In addition to being very ugly, this solution is also
slow. However, it does get the job done.

The disadvantage of this solution is that it is very
difficult to satisfy the POSIX requirement of having a
child process (a process that was created by the current
process) know about the current process signal informa-
tion. We have discovered no good solution for this.

Terminal Interface

One major difference between the most popular
UNIX implementations has been in the low level termi-
nal interfaces. I don’t mean windowing systems, al-
though that is also an important issue not addressed by
either of these standards.

I am referring to the functions that allow manipula-
tion of things like the character size in bits, speed of a
serial port, flow control, etc. POSIX specifies a new
group of routines that provide all of the traditional
functionality, and can be implemented on top of existing
implementations.

The difficult part of this emulation occurs on BSD
systems. POSIX requires that a process be able to
specify the minimum number of characters that a read
will get from the terminal before giving them back to the
application. On BSD systems you can wait for one or
many.

POSIX also requires that the application be able to
specify a time period that the system will wait for data
from a terminal before returning. On BSD systems
there is no similar facility.

Again, there doesn’t appear to be any good solution
for these problems.

Directory Operations

BSD has had routines that permit retrieval of the
list of files in a directory for several years. AT&T pro-
vided a similar interface in System V.3. The standard
interface for these functions, as defined by POSIX, is
slightly different from either of these, but is very closely
related.

Itis important to note that the POSIX interface does
not have the functions seekdir and telldir. These func-
tions are found in BSD systems, but were not felt to be
implementable in a portable fashion by the P1003.1
working group.

Instead of implementing these routines ourselves,
we used a public domain library that works on BSD,
System V, and many others. You can find a lot of
portable code already implemented and placed in the
public domain.

Atomic File Operations

POSIX requires the functions rename and rmdir.
These functions allow the atomic renaming of a file and
the removal of a directory, respectively.

These routines have been on BSD systems, but not
on AT&T based implementations. To implement the
functionality on those systems, the action must be per-
formed as a series of calls — thus making it non-atomic.

Specifically, the BSD rename function could be im-
plemented using the sequence link, unlink.

What We Did

The strategy we used was to write a group ofheaders
(a file that is referenced by an application, and defines
some standard system information) and library routines
that provide all of the interfaces. POSIX requires that
certain information be in the headers that already exist
on most implementations, as well as some new headers.

ANSI C also has requirements on what information
should be provided by traditional headers, and also
requires some new ones.

The best way to provide for these requirements
would be to augment the existing system files. However,
as most people are (naturally) wary of modifying their
vendor provided headers and libraries, we chose a less
destructive method of installation.

During the installation process the existingheaders
are examined, and the important information from them
is built into the new headers. These new headers are
then installed in their own hierarchy of directories
under /usr/include. The libraries are compiled using
these new headers, and then are installed as an addi-
tional library that must be actively linked to an applica-
tion wishing to use the portability routines.

T T R e e S B

MARCH, 1989

21

This project is now about 90% complete. Certainly
it is far enough along that we are using the routines in
applications (this has turned out to be the only way to
debug them effectively).

Problem Revisited

Unfortunately, during the development of the porta-
bility libraries I came up against the second problem.
My application required a user interface, and should
really have had something like the traditional UNIX
“curses” package under it for portability. (The “curses”
packageis a set of routines that permit an application to
perform screen-oriented functions, and have those ac-
tions translated to the appropriate output sequences for
virtually any terminal.) '

This interface is not being worked on'by any stan-
dards committee that I know of, but no other interface is
either. I also needed a C language interface for a
database, and a consistent interface for cross-network
communication.

Since there are no formal UNIX standards for these
yet, we took a different tack. If we know what require-
ments we have for a facility, and we know what tradi-
tional interfaces are available to do it, then we should be
able to define our own “portable” interfaces which run on
those traditional libraries. When a standard becomes
available, we will just build our interfaces on top of that,
and the application will continue to function.

Once a decision had been made about exactly what
functionality was needed in our application world, we
were able to implement it — the user interface on top of
curses /termcap [terminfo, the database on top of a popu-
lar C database engine, and the networking stuff on top
of both BSD4.2 and BSD4.1 socket libraries.

We tried to keep the code structured in such a way
that new additional interfaces could be hooked in as nec-
essary, while still having the code be fairly optimized.
After all, a slow user interface is one that will not be
used.

Boon Or Baggage?

What we ended up building is a minimalist’s porta-
bility system. We have a set of libraries and headers that
permit us to write code that should conform to 1003.1
and ANSI C, and we have additional headers and rou-
tines that provide a simple interface to some pretty
complex facilities.

It will certainly be a long time before any set of inter-
national standards solves all of the portability problems
associated with UNIX systems. Until that time, you can
look at the components of that total solution in one of two
ways: either as a boon that will make your software
future more compatible, or as more baggage that soft-
ware engineers need to carry around so that they can
make their applications function on machines that have

yet another, different interface.

By creating underlying libraries, these interfaces
become the only thing a programmer has touse, all of the
time. This should decrease software development time,
while increasing software portability and readibilty.

When all is said and done, that is what software
standards are all about. Sure it’s a fantasy, but it’s a
good one.

Shane P. McCarron, Systems Analyst, NAPS
International

e e s s e
USER INTERFACE

Is The X Window System A
Standard?

By Martin R.M. Dunsmuir

With the move towards windowing systems in both
the UNIX and PC worlds, many opportunities have
arisen for the development of new interactive applica-
tions. For those UNIX Independent Software Vendors
(ISVs) who are now considering their future product
development strategy, the need to develop Graphical
Applications is compelling.

Although the Xlib interface from the MIT X Consor-
tium has emerged as the foundation Applications Pro-
gram Interface (API) for UNIX Graphical Applications,
many higher level issues remain undecided. Different
vendors offer different programming and user inter-
faces. This diversity has left the ISV with so many
choices that it is a major obstacle to serious applications
becoming widely available.

This article looks at the reasons for the popularity of
the X Window System and examines the question of
whether, in spite of its apparent acceptance, it really is
a standard that can be relied on.

The X Window Philosophy and Its Implications

What does the X Window System offer which makes
it sointeresting? Thebasic concept embodied in X which
has been directly responsible for its widespread
adoption is that it promises the ability to start and
interact with applications from anywhere in a heteroge-
neous computer network. Its central function is to
provide a standard graphical terminal emulator capa-
bility.

With almost all windowing systems, apart from X,
some application code executes on the user’s worksta-
tion. By contrast, X isolates all applications code on the

22

so-called client machine. Client applications perform all
I/O operations via remote procedure calls passed over
the network to a server program controlling the screen
and input devices on the user’s workstation.

The advantage of this latter approach is that it
allows applications to be run from any workstation that
may or may not support a windowing system. The cor-
nerstone of the system is the application level protocol
which encodes communication between client and
server — the X protocol (see Figure 1 below).

This prospect of freeing the user’s choice of worksta-
tion while tying him to centralized “applications serv-
ers”has some interesting implications. Unless ISVsare
very careful in implementing products based on X, they
may find themselves pinned increasingly to proprietary
systems instead of participating in the emergence of an
Open Systems environment.

The reason I say this is that X is only part of the
problem. Though for the moment there is a standard
base set of services emerging under the X appellation,
applications depend on more than a standard set of user
interface services. They also rely upon the underlying
OS services which are used as a means to implement the
majority of their functionality.

In order to ensure the emergence and adoption of a
true standard, all applications’ interfaces need to be
standardized. It is not enough to standardize the User
Interface without standardizing the other operating
system interfaces.

It is in the interests of ISVs to work for increased
standardization of the X client services at all levels.
They should avoid dependence on proprietary exten-
sions, since these will tie them to a particular platform
and subvert the reliability of the X system as a standard.

THE UNIX TECHNOLOGY ADVISOR

Elements of the X Environment

The key elements of the X environment which need
to be standardized are application program interfaces
(APIs), Applications Style, and Window Manager Be-
havior.

APIs are those interfaces provided to the program-
mer on the client side. It is important that these inter-
faces provide a standard set of functions to allow source
level portability across multiple X implementations.

Applications Style and Window Manager Behavior
are combined into what is termed the Feel of the User
Interface. Standardized Applications Style governs the
control elements (menus, dialogs and scroll bars, etc.)
which are used to interface with the user. Window Man-
ager functions, when standardized across different X
implementations, offer users a consistent paradigm for
manipulating active applications (e.g., moving, sizing,
and iconifying).

The importance of standardized behavior cannot be
overstressed. Without it, users have difficulty moving
between different vendors’ products, and the effort re-
quired to become proficient with new applications is sig-
nificantly increased. Standardized behavior is a key
feature of the popular windowing systems.

I'do not consider the Look (or Appearance) of differ-
ent implementations to be as significant as the Feel
because it is quite possible to move easily between sys-
tems with different Looks but the same Feel. An ex-
ample of this is Hewlett Packard’s three-dimensional
implementation of Presentation Manager Behavior, re-
cently embodied in their proposal to OSF (called the
Common X Interface or CXI). Users can readily use CXI
and OS/2 PM interchangeably.

Let us look at the different elements of X systems

Figure 1: X Client — Server Model

X ChentProg ram

Keyboard

MARCH, 1989

23

and see how they relate to the model I have proposed (see
Figure 2, below).

Standardized Elements of the X Client
Architecture

In order to realize the full promise of X, namely the
ability of any user to run any application available on the
network, it is necessary to ensure that all X implemen-
tations adhere to a standard low level protocol. To
achieve this, the MIT X Consortium, who are responsible
for reference implementation and specification of the
current X Window System, have defined and published
the X protocol.

Allvendors have signed up to the base X protocol and
the Clanguage binding to it, called Xlib. Xlib makes the
base functionality of X available to applications, it
embodies drawing functions, window creation and
manipulation functions, and functions for control of
variable features such as font and color selection.

The Xlib interface also defines standard events de-
livered to applications across a well defined interface.
These events are sent by the server and other clients to
communicate mouse and keyboard input and to initiate
redraw and sizing operations implemented by client
specific code.

The X Consortium has also agreed on a layer of func-
tionality, built on top of Xlib, call the Xt Intrinsics, and
are working to standardize conventions for the commu-
nication between different clients and, in particular, ap-
plication clients and the Window Manager. This set of
conventions is called the Inter Client Communication
Conventions Manual ICCCM).

The Intrinsics are significant because they imple-
ment a simple object management facility which can

form the basis for higher level object oriented program
interfaces. This is a common paradigm used by all
popular windowing systems.

The ICCCM is important because it standardizes
the advisory information which can pass between appli-
cations and the Window Manager, responsible for deco-
rating active application windows with the elements
which embody the standard behavior.

Higher Level API and Window Manager
Standards

The intrinsics is a layer of software which supports
the creation of window classes within an application.
Using the intrinsics itis possible to define class handlers
for standard and application specific windows and to
have these class handlers called appropriately when
events, destined for a particular class instance or win-
dow, occur. The intrinsics also allow the definition of
inter-class messages and support their delivery in an
analogous manner to system events such as keystrokes
and resizing messages.

Typically, applications consist of a combination of
application specific window classes used in conjunction
with standard control classes for features such as
menus, dialog boxes and scroll bars. It is these latter
“controls” which implement the style of an application
and allow it to share common behavior with others.

To date there have been a number of competing li-
braries of standard controls (known as widgets in X
parlance). The most prevalent widget sets today are:
DEC’s XUI, implementing the DecWindows Style;
AT&T and SUN’s Openlook; HP’s CXI; and, from the
academic world, the Athena Widgets.

The widgets used define the behavior of applications

Figure 2: X Windows Client Architecture

X Application

Widgets (Application Style)

Drawing etc.

Intrinsics

Xlib

Events and

24

and, because they define specific class message proto-
cols, they represent a very important set of APIs. The
widgets are in need of standardization to further solid-
ify the specification of the environment which the pro-
grammer operates in.

In addition to the widget APIs, the other area where
there is a significant level of diversity is Window Man-
agers. Window Managers are important to users be-
cause, when combined with the widget defined applica-
tion style, they define the User Interface.

They are also important because along with each
Window Manager there is a set of Inter-Client commu-
nication conventions which are used to send hints to the
Window Manager to control the manner in which an
application is decorated with Window Manager con-
trolled functions, such as sizing borders, iconization and
system menus.

For example, applications often want to tell the
Window Manager which forms of decoration they want
and how they would like to behave (e.g., they won’t
respond to resizing below a certain size, etc.). There is
yet another set of APIs associated with the delivery of
these hints, and this is also an area where standardiza-
tion is important.

I believe that the X Window System will become a
true standard if one widget set and one Window Man-
ager, with its inherent Inter-Client Communication
Conventions, emerges as a standard for applications
developers. Fortunately there have recently been some
moves in this direction.

At the end of December, the Open Software Founda-
tion (OSF) decided to adopt a standard Window Man-
ager and standard set of widgets (based on a combina-
tion of XUI and CXI code) implementing the style of
Microsoft Presentation Manager. This common behav-
ior (called MOTIF by OSF) is an important and logical
move because it promises a common style between the
large installed base of PCs and UNIX workstations.

In addition, the PM behavior has commonality to a
large extent with the behavior defined by IBM’s Com-
mon User Access method (CUA), which is part of their
Systems Applications Architecture. This means there
will be common behavioral elements between MOTIF
applications and the largest installed base of mainframe
applications front ends.

MOTIF will allow ISVs to concentrate on a single
standard API, giving a consistent style across many
vendors’ platforms. Both HP and DEC are publicly
committed to moving to MOTIF later this year.

Areas For Future Attention

Although some progress has been made towards the
definition of the standard X environment, there are still
many areas where work needs to be done if X is to be as

THE UNIX TECHNOLOGY ADVISOR

rich as other commercially available windowing sys-
tems. Particular areas which need attention are:

* The provision of standard fonts and the extension
of the X protocol and APIs to make high calibre
wysiwyg applications possible.

* The extension of X to provide standard support
for hardcopy output. Currently the X API does not
support drawing on printers and plotters. Although
these functions may not require extensions to the
server or protocol, it would be a significant benefit
if applications could depend on a standard printer
driver model and a standard set of APIs for render-
ing drawings. Presentation Manager, for instance,
allows applications to use the same APIs for draw-
ing on the display and on hardcopy devices. This
greatly reduces the application writer’s burden and
leads to more consistent and simpler applications
architecture.

* The UNIX shell and base tools, such as Is, sort,
grep, etc., provide a standard environment for inter
facing with and manipulating files and applications.
Similar graphically oriented file management ap-
plications need to be developed so that users have a
common paradigm to use for these purposes. Simple
solutions, such as terminal emulators, are inade-
quate for this purpose in the commercial environ-
ment.

Finally, there are many extensions to X which have
been developed and advertised by different vendors.
These features need to be treated with care; only where
they are a significant benefit and mature enough for
standardization should they be adopted.

Conclusion

The X Window System has emerged rapidly tobe the
standard base for windowing systems in the UNIX
environment. However, in order for it to become the real
standard in the longer term it is important that vendors
recognize the significance of providing a fully standard-
ized X environment for both users and ISVs.

Without the emergence of a common set of APIs, a
standard applications style and a common Window
Manager behavior, there is some risk that the X Window
System may end up as inore of a dream than a standard.

Martin Dunsmuir, Director of UNIX Systems
Development, Microsoft Corporation

ycklama
17818 Oxford Dr.
Arilington, WA 98223-4626

